
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.5.13

1.5.13.1

1.5.13.2

1.5.13.3

Table	of	Contents

User	Guide
Introduction

Getting	Started

Running	Apache	Brooklyn

Deploying	Blueprints

Monitoring	and	Managing	Applications

Policies

Concepts

Downloads

Brooklyn	Concepts

Entities

Application,	Parent	and	Membership

Configuration,	Sensors	and	Effectors

Lifecycle	and	ManagementContext

Dependent	Configuration

Location

Policies

Execution

Stop/start/restart	behaviour

Writing	Blueprints

Creating	YAML	Blueprint

Entity	Configuration

Setting	Locations

Configuring	VMs

Multiple	Services	and	Dependency	Injection

Custom	Entities

Catalog

Clusters,	Specs,	and	Composition

Enrichers

Policies

Effectors

Clusters	and	Policies

Java	Entities

Creating	from	a	Maven	Archetype

Defining	and	Deploying

Handling	Bundle	Dependencies

1

1.5.13.4

1.5.13.5

1.5.13.6

1.5.13.7

1.5.13.8

1.5.13.9

1.5.13.10

1.5.14

1.5.15

1.5.16

1.5.17

1.5.18

1.5.19

1.5.20

1.5.21

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.6.11

1.6.12

1.6.13

1.6.14

1.6.15

1.6.16

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.5.1

1.7.5.2

Topology,	Dependencies,	and	Management	Policies

Common	Classes	and	Entities

Feeds

Writing	an	Entity

Custom	Entity	Development

Service	State

Entitlements

Windows	Blueprints

Testing	YAML	Blueprints

Ansible	in	YAML	Blueprints

Chef	in	YAML	Blueprints

Salt	in	YAML	Blueprints

YAML	Blueprint	Advanced	Example

Blueprinting	Tips

YAML	Blueprint	Reference

Deploying	Blueprint

Clouds

Amazon	Web	Services

Azure	Compute	ARM

Azure	Compute	Classic

Apache	CloudStack

Google	Compute	Engine

IBM	Softlayer

OpenStack

Named	Locations

Provisioned	Machine	Requirements

BYON

SSH	Keys

Localhost

Location	Customizers

Customizing	Cloud	Security	Groups

Specialized	Locations

Reference	Guide

Production	Installation

Starting,	Stopping	and	Monitoring

Server	CLI	Reference

Client	CLI	Reference

GUI	Guide

Launching

Deploying	Blueprints

2

1.7.5.3

1.7.5.4

1.7.6

1.7.7

1.7.8

1.7.9

1.7.9.1

1.7.10

1.7.11

1.7.12

1.7.13

1.7.14

1.7.15

1.8

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

3.1

3.2

Monitoring	and	Managing	Applications

Using	Policies

REST	API

Brooklyn	Configuration	and	Options

Persistence

High	Availability

Configuring	HA	-	an	example

Logging

Externalized	Configuration

Requirements

Upgrade

Security	Guidelines

Troubleshooting

Other	0.12.0	Resources

Developer	Guide
Get	the	Code

Maven	Build

IDE	Setup

Code	Structure

Tests

License	Considerations

Miscellaneous	Tips	and	Tricks

Logging

Brooklyn	Remote	Debugging

GitHub

Javadoc

Versions

Other	Resources

3

https://brooklyn.apache.org/developers/code/
http://github.com/apache/brooklyn
https://brooklyn.apache.org/v/latest/misc/javadoc
https://brooklyn.apache.org/meta/versions.html
https://brooklyn.apache.org/documentation/other-docs.html

Apache	Brooklyn
Welcome	to	the	Apache	Brooklyn	documentation.

Please	select	the	section	you	wish	to	discover	from	the	left	menu.	Alternatively,	you	can	search	within	the	entire
documentation	via	the	search	field	on	the	top	left.

Introduction

4

This	guide	will	walk	you	through	deploying	an	example	3-tier	web	application	to	a	public	cloud,	and	demonstrate	the
autoscaling	capabilities	of	the	Brooklyn	platform.

Two	methods	of	deployment	are	detailed	in	this	tutorial,	using	virtualisation	with	Vagrant	and	an	install	in	your	own
environment	(such	as	your	local	machine	or	in	your	private/public	cloud).

The	latter	assumes	that	you	have	a	Java	Runtime	Environment	(JRE){:target="_blank"}	installed	(version	7	or	later),
as	Brooklyn	is	Java	under	the	covers.

To	get	you	up-and-running	quickly,	the	Vagrant	option	will	provision	four	compute	nodes	for	you	to	deploy	applications
to.

Install	Apache	Brooklyn
Vagrant{:target="_blank"}	is	a	software	package	which	automates	the	process	of	setting	up	virtual	machines	(VM)
such	as	Oracle	VirtualBox{:target="_blank"}.	We	recommend	it	as	the	easiest	way	of	getting	started	with	Apache
Brooklyn.

Firstly,	download	and	install:

Vagrant{:target="_blank"}
Oracle	VirtualBox{:target="_blank"}

Then	download	the	provided	Apache	Brooklyn	vagrant	configuration	from

[here](https://www.apache.org/dyn/closer.lua?action=download&filename=brooklyn/apache-brooklyn-NaN/apache-brook

lyn-NaN-vagrant.tar.gz).

This	archive	contains	everything	you	need	to	create	an	environment	for	use	with	this	guide,	providing	an	Apache
Brooklyn	instance	and	some	blank	VMs.

Extract	the		tar.gz		archive	and	navigate	into	the	expanded		apache-brooklyn-{{book.brooklyn-version}}-vagrant	
folder

$	tar	xvf	apache-brooklyn-{{book.brooklyn-version}}-vagrant.tar.gz

$	cd	apache-brooklyn-{{book.brooklyn-version}}-vagrant

For	Centos	7	and	RHEL	7	users,	the	recommended	way	to	install	Apache	Brooklyn	on	RPM-based	Linux	distributions
is	by	using	the	RPM	package.

RPM	is	the	de	facto	standard	for	packaging	software	on	these	Linux	distributions	and	provides	a	mechanism	for
installing,	upgrading	and	removing	packages	such	as	Apache	Brooklyn.	The	RPM	package	contains	all	the	necessary
files	associated	with	the	Apache	Brooklyn	application.

Download	the	Apache	Brooklyn	RPM	distribution{:target="_blank"}.

Once	downloaded,	run	the	following	shell	command	as	root:

$	yum	install	apache-brooklyn-{{book.brooklyn-version}}-1.rpm

For	Ubuntu	and	Debian	users,	the	recommended	way	to	install	Apache	Brooklyn	is	to	use	the	deb	file.

The	deb	file	is	the	de	facto	standard	for	packaging	software	on	these	Linux	distributions	and	provides	a	mechanism
for	installing,	upgrading	and	removing	packages	such	as	Apache	Brooklyn.	The	deb	package	contains	all	the
necessary	files	associated	with	the	Apache	Brooklyn	application.

Running	Apache	Brooklyn

5

https://www.java.com
https://www.vagrantup.com/
https://www.virtualbox.org
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN/apache-brooklyn-NaN-1.noarch.rpm

Download	the	Apache	Brooklyn	deb	distribution{:target="_blank"}.

Once	downloaded,	run	the	following	shell	command:

$	sudo	dpkg	-i	apache-brooklyn_{{book.brooklyn-version}}_noarch.deb

For	Linux	or	OSX	please	download	the	Apache	Brooklyn		tar.gz		archive	from	the	download{:target="_blank"}
section.

Extract	the		tar.gz		archive	and	navigate	into	the	expanded		apache-brooklyn-{{	book.brooklyn-version	}}		folder.

$	tar	-zxf	apache-brooklyn-{{	book.brooklyn-version	}}-dist.tar.gz

$	cd	apache-brooklyn-{{	book.brooklyn.version	}}

For	all	versions	of	Microsoft	Windows,	please	download	the	Apache	Brooklyn	zip	file	from	here{:target="_blank"}.

Extract	this	zip	file	to	a	directory	on	your	computer	such	as		c:\Program	Files\brooklyn		where		c		is	the	letter	of	your
operating	system	drive.

By	default,	no	authentication	is	required	and	the	web-console	will	listen	on	all	network	interfaces.	For	a	production
system,	or	if	Apache	Brooklyn	is	publicly	reachable,	it	is	strongly	recommended	to	configure	security.	Documentation
of	configuration	options	include:

Security
Persistence
Cloud	credentials

Launch	Apache	Brooklyn
Now	start	Apache	Brooklyn	with	the	following	command:

$	vagrant	up	brooklyn

You	can	see	if	Apache	Brooklyn	launched	OK	by	viewing	the	log	files	with	the	command

$	vagrant	ssh	brooklyn	--command	'sudo	journalctl	-n15	-f	-u	brooklyn'

Apache	Brooklyn	should	now	have	been	installed	and	be	running	as	a	system	service.	It	can	stopped	and	started	with
the	standard	systemctl	commands:

$	systemctl	start|stop|restart|status	brooklyn

The	application	should	then	output	its	logs	to		brooklyn.debug.log		and		brooklyn.info.log	,	please	refer	to	the	paths
page	for	the	locations	of	these.

Apache	Brooklyn	should	now	have	been	installed	and	be	running	as	a	system	service.	It	can	be	stopped	and	started
with	the	standard	service	commands:

$	sudo	service	brooklyn	start|stop|restart|status

Running	Apache	Brooklyn

6

https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn_NaN_noarch.deb

The	application	should	then	output	its	logs	to		brooklyn.debug.log		and		brooklyn.info.log	,	please	refer	to	the	paths
page	for	the	locations	of	these.

Now	start	Apache	Brooklyn	with	the	following	command:

$	bin/start

The	application	should	then	output	its	log	to		brooklyn.debug.log		and		brooklyn.info.log	,	please	refer	to	the	paths
page	for	the	locations	of	these.

You	can	now	start	Apache	Brooklyn	by	running		c:\Program	Files\brooklyn\bin\start.bat	

The	application	should	then	output	its	log	into	the	console	and	also		c:\Program
Files\brooklyn\data\log\brooklyn.debug.log		and		c:\Program	Files\brooklyn\data\log\brooklyn.info.log	

</div>	Notice!	Before	launching	Apache	Brooklyn,	please	check	the		date		on	the	local	machine.	Even	several
minutes	before	or	after	the	actual	time	could	cause	problems.	</div>

Control	Apache	Brooklyn
Apache	Brooklyn	has	a	web	console	which	can	be	used	to	control	the	application.	The	Brooklyn	log	will	contain	the
address	of	the	management	interface:

INFO		Started	Brooklyn	console	at	http://127.0.0.1:8081/,	running	

classpath://brooklyn.war

By	default	it	can	be	accessed	by	opening	127.0.0.1:8081{:target="_blank"}	in	your	web	browser.

The	rest	of	this	getting	started	guide	uses	the	Apache	Brooklyn	command	line	interface	(CLI)	tool,		br	.	This	tool	is
both	distributed	with	Apache	Brooklyn	or	can	be	downloaded	using	the	most	appropriate	link	for	your	OS:

Windows
Linux
OSX

For	details	on	the	CLI,	see	the	Client	CLI	Reference	page.

Next
The	first	thing	we	want	to	do	with	Brooklyn	is	**[deploy	a	blueprint](/guide/start/blueprints.html)**.

Running	Apache	Brooklyn

7

http://127.0.0.1:8081
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN/apache-brooklyn-NaN-client-cli-windows.zip
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN/apache-brooklyn-NaN-client-cli-linux.tar.gz
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN/apache-brooklyn-NaN-client-cli-macosx.tar.gz

Blueprints	are	descriptors	or	patterns	which	describe	how	Apache	Brooklyn	should	deploy	applications.	Blueprints	are
written	in	YAML{:target="blank"}	and	many	of	the	entities	available	are	defined	in	the	_Brooklyn	Catalog.

Launching	from	a	Blueprint
We'll	start	by	deploying	an	application	with	a	simple	YAML	blueprint	containing	an	Apache	Tomcat{:target="_blank"}
server.

Copy	the	blueprint	below	into	a	text	file,	"myapp.yaml",	in	your	workspace	(Note,	to	copy	the	file	you	can	hover	your
mouse	over	the	right	side	of	the	text	box	below	to	get	a	Javascript	"copy"	button).

name:	Tomcat

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer

		name:	tomcatServer

location:	<your-location-definition-goes-here>

Locations
Before	you	can	create	an	application	with	this	configuration,	you	need	to	modify	the	YAML	to	specify	a	location.
Locations	in	Apache	Brooklyn	are	server	resources	which	Brooklyn	can	use	to	deploy	applications.	These	locations
may	be	servers	or	cloud	providers	which	provide	access	to	servers.

In	order	to	configure	the	location	in	which	Apache	Brooklyn	launches	an	application,	replace	the		location:		element
with	values	for	your	chosen	target	environment.	Here	are	some	examples	of	the	various	location	types:

{::options	parse_block_html="true"	/}

Vagrant
Clouds
BYON

The	Vagrant	configuration	described	in	[Running	Apache	Brooklyn](./running.html),	on	the	previous	page	is	the
recommended	way	of	running	this	tutorial.	This	configuration	comes	with	four	blank	vagrant	configurations	called
byon1	to	byon4.	These	can	be	launched	by	entering	the	following	command	into	the	terminal	in	the	vagrant
configuration	directory.	```bash	$	vagrant	up	byon1	byon2	byon3	byon4	```	The	location	in	"myapp.yaml"	can	now	be
replaced	with	the	following	YAML	to	launch	using	these	vagrant	servers.	```yaml	location:	byon:	user:	vagrant
password:	vagrant	hosts:	-	10.10.10.101	-	10.10.10.102	-	10.10.10.103	-	10.10.10.104	```
Apache	Brooklyn	uses	[Apcahe	jclouds](http://jclouds.apache.org/){:target="_blank"}	to	support	a	range	of	cloud
locations.	More	information	on	the	range	of	providers	and	configurations	is	available	[here](/guide/locations/#clouds)
{:target="_blank"}.	As	an	example,	here	is	a	configuration	for	[Amazon	Web	Services	(AWS)]
(http://www.aws.amazon.com){:target="_blank"}.	Swap	the	identity	and	credential	with	your	AWS	account	details,	then
replace	the	location	in	your	"myapp.yaml"	with	this.	```yaml	location:	jclouds:aws-ec2:	identity:
ABCDEFGHIJKLMNOPQRST	credential:	s3cr3tsq1rr3ls3cr3tsq1rr3ls3cr3tsq1rr3l	```
The	Bring	Your	Own	Nodes	(BYON)	configuration	allows	Apache	Brooklyn	to	make	use	of	already	available	servers.
These	can	be	specified	by	a	list	of	IP	addresses	with	a	user	and	password	as	shown	below.	More	information
including	the	full	range	of	configuration	options	is	available	[here](/guide/locations/#byon){:target="_blank"}.	Replace
the	hosts,	user	and	password	in	the	example	below	with	your	own	server	details,	then	replace	the	location	in	your
"myapp.yaml"	with	this.	```yaml	location:	byon:	user:	myuser	password:	mypassword	#	or...	#privateKeyFile:
~/.ssh/my.pem	hosts:	-	192.168.0.18	-	192.168.0.19	```

Deploying	Blueprints

8

https://en.wikipedia.org/wiki/YAML
https://tomcat.apache.org/

Note:	For	instructions	on	setting	up	a	variety	of	locations	or	storing	credentials/locations	in	a	file	on	disk	rather	than	in
the	blueprint,	see	Locations	in	the	Operations	section	of	the	User	Guide.

Deploying	the	Application
First,	log	in	to	brooklyn	with	the	command	line	interface	(CLI)	tool	by	typing:

$	br	login	http://localhost:8081/

To	secure	the	Apache	Brooklyn	instance,	you	can	add	a	username	and	password	to	Brooklyn's	properties	file,	as
described	in	the	User	Guide	here{:target="_blank"}.	If	this	is	configured,	the	login	command	will	require	an	additional
parameter	for	the	userid	and	will	then	prompt	for	a	password.

Now	you	can	create	the	application	with	the	command	below:

$	br	deploy	myapp.yaml

Id:							hTPAF19s			

Name:					Tomcat			

Status:			In	progress		

Depending	on	your	choice	of	location	it	may	take	some	time	for	the	application	to	start,	the	next	page	describes	how
you	can	monitor	the	progress	of	the	application	deployment	and	verify	if	it	was	successful.

Next
Having	deployed	an	application,	the	next	step	is	**[monitoring	and	managing](managing.html)**	it.

Deploying	Blueprints

9

So	far	we	have	gone	through	Apache	Brooklyn's	ability	to	deploy	an	application	blueprint	to	a	location,	but	this	just	the
beginning.	Next	we	will	outline	how	to	manage	the	application	that	has	been	deployed.

Applications
Having	created	the	application,	we	can	find	a	summary	of	all	deployed	applications	using:

$	br	application

	Id									Name					Status				Location			

	hTPAF19s			Tomcat			RUNNING			ajVVAhER

	application		can	be	shortened	to	the	alias		app	,	for	example:

$	br	app

	Id									Name					Status				Location			

	hTPAF19s			Tomcat			RUNNING			ajVVAhER

A	full	list	of	abbreviations	such	as	this	can	be	found	in	the	CLI	reference	guide{:target="_blank"}.

In	the	above	example	the	Id		hTPAF19s		and	the	Name		Tomcat		are	shown.	You	can	use	either	of	these	handles	to
monitor	and	control	the	application.	The	Id	shown	for	your	application	will	be	different	to	this	but	the	name	should	be
the	same,	note	that	if	you	are	running	multiple	applications	the	Name	may	not	be	unique.

Things	we	might	want	to	do

Get	the	application	details

Using	the	name	`Tomcat`	we	can	get	the	application	details:

```bash	$	br	application	Tomcat	```

		Id:														hTPAF19s			

		Name:												Tomcat			

		Status:										RUNNING			

		ServiceUp:							true			

		Type:												org.apache.brooklyn.entity.stock.BasicApplication			

		CatalogItemId:			null			

		LocationId:						ajVVAhER			

		LocationName:				FixedListMachineProvisioningLocation:ajVV			

		LocationSpec:				vagrantbyon			

		LocationType:				

org.apache.brooklyn.location.byon.FixedListMachineProvisioningLocation		

Explore	the	hierarchy	of	all	applications

We	can	explore	the	management	hierarchy	of	all	applications,	which	will	show	us	the	entities	they	are	composed	of.

```bash	$	br	tree	```

Monitoring	and	Managing	Applications

10

|-	Tomcat

+-	org.apache.brooklyn.entity.stock.BasicApplication

		|-	tomcatServer

		+-	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer

View	our	application's	blueprint

You	can	view	the	blueprint	for	the	application	again:

```bash	$	br	application	Tomcat	spec	```

"name:	Tomcat\nlocation:\n		mylocation\nservices:\n-	serviceType:	

brooklyn.entity.webapp.tomcat.TomcatServer\n"

View	our	application's	configuration

You	can	view	the	configuration	of	the	application:

```bash	$	br	application	Tomcat	config	```

Key																				Value			

camp.template.id							l67i25CM			

brooklyn.wrapper_app			true			

Entities
An	Entity	is	Apache	Brooklyn's	representation	of	a	software	package	or	service	which	it	can	control	or	interact	with.	All
of	the	entities	Apache	Brooklyn	can	use	are	listed	in	the	Brooklyn	Catalog.

To	list	the	entities	of	the	application	you	can	use	the		entity		or		ent		command:

$	br	application	Tomcat	entity

Id									Name																Type			

Wx7r1C4e			tomcatServer			org.apache.brooklyn.entity.webapp.tomcat.TomcatServer							

This	shows	one	entity	is	available:		tomcatServer	.	Note	that	this	is	the	name	we	gave	the	entity	in	the	YAML	in
Launching	from	a	Blueprint	on	the	previous	page.

You	can	get	summary	information	for	this	entity	by	providing	its	name	(or	ID).

$	br	application	Tomcat	entity	tomcatServer

Id:														Wx7r1C4e			

Name:												tomcatServer			

Status:										RUNNING			

ServiceUp:							true			

Type:												org.apache.brooklyn.entity.webapp.tomcat.TomcatServer			

CatalogItemId:			null			

Monitoring	and	Managing	Applications

11

Also	you	can	see	the	configuration	of	this	entity	with	the		config		command.

$	br	application	Tomcat	entity	tomcatServer	config

Key																							Value			

jmx.agent.mode												JMXMP_AND_RMI			

brooklyn.wrapper_app						true			

camp.template.id										yBcQuFZe			

onbox.base.dir												/home/vagrant/brooklyn-managed-processes			

onbox.base.dir.resolved			true			

install.unique_label						TomcatServer_7.0.65			

Sensors
Sensors	are	properties	which	show	the	state	of	an	entity	and	provide	a	real-time	picture	of	an	entity	within	an
application.

You	can	view	the	sensors	available	on	the	application	using:

$	br	application	Tomcat	sensor

Name																							Description																																																																													

Value			

service.isUp															Whether	the	service	is	active	and	availability	

(confirmed	and	monitored)																true			

service.notUp.indicators			A	map	of	namespaced	indicators	that	the	service	is	not	

up																															{}			

service.problems											A	map	of	namespaced	indicators	of	problems	with	a	

service																															{}			

service.state														Actual	lifecycle	state	of	the	service																																																			

"RUNNING"			

service.state.expected					Last	controlled	change	to	service	state,	indicating	what	

the	expected	state	should	be			"running	@	1450356994928	/	Thu	Dec	17	12:56:34	GMT	

2015"

To	explore	sensors	on	a	specific	entity	use	the		sensor		command	with	an	entity	specified:

$	br	application	Tomcat	entity	tomcatServer	sensor

Name																	Description																																																																																							

Value			

download.addon.urls		URL	patterns	for	downloading	named	add-ons	(will	substitute	

things	like	${version}	automatically)	

download.url									URL	pattern	for	downloading	the	installer	(will	substitute	

things	like	${version}	automatically)		

"http://download.nextag.com/apache/tomcat/tomcat-7/v${version}/bin/apache-tomcat-

${version}.tar.gz"			

Monitoring	and	Managing	Applications

12

expandedinstall.dir		Directory	for	installed	artifacts	(e.g.	expanded	dir	after	

unpacking	.tgz)																								"/home/vagrant/brooklyn-managed-

processes/installs/TomcatServer_7.0.65/apache-tomcat-7.0.65"			

host.address									Host	IP	address																																																																																			

"10.10.10.101"			

host.name												Host	name																																																																																									

"10.10.10.101"			

host.sshAddress						user@host:port	for	ssh'ing	(or	null	if	inappropriate)																																													

"vagrant@10.10.10.101:22"			

host.subnet.address		Host	address	as	known	internally	in	the	subnet	where	it	is	

running	(if	different	to	host.name)				"10.10.10.101"			

host.subnet.hostname	Host	name	as	known	internally	in	the	subnet	where	it	is	

running	(if	different	to	host.name)							"10.10.10.101"			

#	etc.	etc.

To	display	the	value	of	a	selected	sensor,	give	the	command	the	sensor	name	as	an	argument

$	br	application	Tomcat	entity	tomcatServer	sensor	webapp.url

"http://10.10.10.101:8080/"

Effectors
Effectors	are	a	means	by	which	you	can	manipulate	the	entities	in	an	application.	You	can	list	the	available	effectors
for	your	application	using:

$	br	application	Tomcat	effector

Name												Description																																											Parameters			

restart									Restart	the	process/service	represented	by	an	entity																																																																																																																																							

start											Start	the	process/service	represented	by	an	entity				locations			

stop												Stop	the	process/service	represented	by	an	entity																																																																																																																																										

For	example,	to	stop	an	application,	use	the		stop		effector.	This	will	cleanly	shutdown	all	components	in	the
application	and	return	any	cloud	machines	that	were	being	used.	Note	that	the	three	"lifecycle"	related	effectors,
	start	,		stop	,	and		restart	,	are	common	to	all	applications	and	software	process	entities	in	Brooklyn.

You	can	list	the	effectors	for	a	specific	entity	using	the	command:

$	br	application	Tomcat	entity	tomcatServer	effector

Name																														Description																																																																															

Parameters			

deploy																												Deploys	the	given	artifact,	from	a	source	URL,	to	

a	given	deployment	filename/context					url,targetName			

populateServiceNotUpDiagnostics			Populates	the	attribute	

service.notUp.diagnostics,	with	any	available	health	indicators						

Monitoring	and	Managing	Applications

13

restart																											Restart	the	process/service	represented	by	an	

entity																																						restartChildren,restartMachine			

start																													Start	the	process/service	represented	by	an	

entity																																								locations			

stop																														Stop	the	process/service	represented	by	an	entity																																									

stopProcessMode,stopMachineMode			

undeploy																										Undeploys	the	given	context/artifact																																																						

targetName			

To	view	the	details	for	a	specific	effector,	append	it's	name	to	the	command:

$	br	application	Tomcat	entity	tomcatServer	effector	deploy

Name					Description																																																																													

Parameters			

deploy			Deploys	the	given	artifact,	from	a	source	URL,	to	a	given	deployment	

filename/context			url,targetName			

These	effectors	can	also	be	invoked	by	appending		invoke		to	this	command.	Some	effectors	require	parameters	for
their	invocation.	For	example,	if	we	look	at	the	details	for		deploy		above	we	can	see	it	requires	a	url	and	targetName.

These	parameters	can	be	supplied	using		--param	parm=value		or	just		-P	parm=value	.

The	commands	below	deploy	the	Apache	Tomcat	hello	world	example{:target="_blank"}	to	our	Tomcat	Server.	In
these	commands,	a	variable	is	created	for	the	root	URL	using	the	appropriate	sensor	and	the	index	page	html	is
displayed.

$	br	application	Tomcat	entity	tomcatServer	effector	deploy	invoke	-P	url=https://tomcat.apache.org/tomcat-6.0-

doc/appdev/sample/sample.war	-P	targetName=sample

$	webapp=$(br	application	Tomcat	entity	tomcatServer	sensor	webapp.url	|	tr	-d	'"')

$	curl	$webapp/sample/

<html>

<head>

<title>Sample	"Hello,	World"	Application</title>

</head>

...

Note	that	at	present	a		tr		command	is	required	in	the	second	line	below	to	strip	quotation	characters	from	the
returned	sensor	value.

Activities
Activities	are	the	actions	an	application	or	entity	takes	within	Apache	Brooklyn.	The		activity		command	allows	us	to
list	out	these	activities.

To	view	a	list	of	all	activities	associated	with	an	entity	enter:

$	br	application	Tomcat	entity	tomcatServer	activity

Id									Task																																							Submitted																						

Monitoring	and	Managing	Applications

14

http://tomcat.apache.org/tomcat-6.0-doc/appdev/index.html

Status						Streams			

LtD5P1cb			start																																						Thu	Dec	17	15:04:43	GMT	2015			

Completed			

l2qo4vTl			provisioning	(FixedListMachineProvisi...			Thu	Dec	17	15:04:43	GMT	2015			

Completed			

wLD764HE			pre-start																																		Thu	Dec	17	15:04:43	GMT	2015			

Completed				

KLTxDkoa			ssh:	initializing	on-box	base	dir	./b...			Thu	Dec	17	15:04:43	GMT	2015			

Completed			env,stderr,stdin,stdout			

jwwcJWmF			start	(processes)																										Thu	Dec	17	15:04:43	GMT	2015			

Completed								

...

To	view	the	details	of	an	individual	activity,	add	its	ID	to	the	command.	In	our	case	this	is		jwwcJWmF	

$	br	application	Tomcat	entity	tomcatServer	activity	jwwcJWmF

Id:																		jwwcJWmF			

DisplayName:									start	(processes)			

Description:												

EntityId:												efUvVWAw			

EntityDisplayName:			TomcatServer:efUv			

Submitted:											Thu	Dec	17	15:04:43	GMT	2015			

Started:													Thu	Dec	17	15:04:43	GMT	2015			

Ended:															Thu	Dec	17	15:08:59	GMT	2015			

CurrentStatus:							Completed			

IsError:													false			

IsCancelled:									false			

SubmittedByTask:					LtD5P1cb			

Streams:																

DetailedStatus:						"Completed	after	4m	16s

No	return	value	(null)"			

Things	we	might	want	to	do

View	Input	and	Output	Streams

If	an	activity	has	associated	input	and	output	streams,	these	may	be	viewed	by	providing	the	activity	scope	and	using
the	commands,	"env",	"stdin",	"stdout",	and	"stderr".	For	example,	for	the	"initializing	on-box	base	dir"	activity	from	the
result	of	the	earlier	example,

```bash	$	br	application	Tomcat	entity	tomcatServer	act	KLTxDkoa	stdout	```

BASE_DIR_RESULT:/home/vagrant/brooklyn-managed-processes:BASE_DIR_RESULT

Monitor	the	progress	of	an	effector

To	monitor	progress	on	an	application	as	it	deploys,	for	example,	one	could	use	a	shell	loop:

Monitoring	and	Managing	Applications

15



```bash	$	while	br	application	Tomcat	entity	tomcatServer	activity	|	grep	'In	progress'	;	do	sleep	1;	echo	;	date;	done	```
This	loop	will	exit	when	the	application	has	deployed	successfully	or	has	failed.	If	it	fails	then	the	'stderr'	command
may	provide	information	about	what	happened	in	any	activities	that	have	associated	streams:

```bash	$	br	application	Tomcat	entity	tomcatServer	act	KLTxDkoa	stderr	```

Diagnose	a	failure

If	an	activity	has	failed,	the	"DetailedStatus"	value	will	help	us	diagnose	what	went	wrong	by	showing	information
about	the	failure.

```bash	$	br	application	evHUlq0n	entity	tomcatServer	activity	lZZ9x662	```

Id:																		lZZ9x662			

DisplayName:									post-start			

Description:												

EntityId:												qZeyoITy			

EntityDisplayName:			tomcatServer			

Submitted:											Mon	Jan	25	12:54:55	GMT	2016			

Started:													Mon	Jan	25	12:54:55	GMT	2016			

Ended:															Mon	Jan	25	12:59:56	GMT	2016			

CurrentStatus:							Failed			

IsError:													true			

IsCancelled:									false			

SubmittedByTask:					hWU7Qvgm			

Streams:																

DetailedStatus:						"Failed	after	5m:	Software	process	entity	

TomcatServerImpl{id=qZeyoITy}	did	not	pass	is-running	check	within	the	required	5m	

limit	(5m	elapsed)

java.lang.IllegalStateException:	Software	process	entity	

TomcatServerImpl{id=qZeyoITy}	did	not	pass	is-running	check	within	the	required	5m	

limit	(5m	elapsed)

				at	

org.apache.brooklyn.entity.software.base.SoftwareProcessImpl.waitForEntityStart(Sof

twareProcessImpl.java:586)

				at	

org.apache.brooklyn.entity.software.base.SoftwareProcessImpl.postDriverStart(Softwa

reProcessImpl.java:260)

				at	

org.apache.brooklyn.entity.software.base.SoftwareProcessDriverLifecycleEffectorTask

s.postStartCustom(SoftwareProcessDriverLifecycleEffectorTasks.java:169)

				at	

org.apache.brooklyn.entity.software.base.lifecycle.MachineLifecycleEffectorTasks$Po

stStartTask.run(MachineLifecycleEffectorTasks.java:570)

				at	java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)

				at	

org.apache.brooklyn.util.core.task.DynamicSequentialTask$DstJob.call(DynamicSequent

ialTask.java:342)

				at	

org.apache.brooklyn.util.core.task.BasicExecutionManager$SubmissionCallable.call(Ba

sicExecutionManager.java:468)

Monitoring	and	Managing	Applications

16

				at	java.util.concurrent.FutureTask.run(FutureTask.java:266)

				at	

java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

				at	

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

				at	java.lang.Thread.run(Thread.java:745)"

Adding	the	"--children"	or	"-c"	parameter	will	show	the	activity's	child	activities,	to	allow	the	hierarchical	structure	of	the
activities	to	be	investigated:

```bash	$	br	application	Tomcat	entity	tomcatServer	activity	-c	jwwcJWmF	```

Id									Task																									Submitted																						Status			

UpYRc3fw			copy-pre-install-resources			Thu	Dec	17	15:04:43	GMT	2015			Completed			

ig8sBHQr			pre-install																		Thu	Dec	17	15:04:43	GMT	2015			Completed			

Elp4HaVj			pre-install-command										Thu	Dec	17	15:04:43	GMT	2015			Completed			

YOvNobJk			setup																								Thu	Dec	17	15:04:43	GMT	2015			Completed			

VN3cDKki			copy-install-resources							Thu	Dec	17	15:08:43	GMT	2015			Completed			

xDJXQC0J			install																						Thu	Dec	17	15:08:43	GMT	2015			Completed			

zxMDXUxz			post-install-command									Thu	Dec	17	15:08:58	GMT	2015			Completed			

qnQnw7Oc			customize																				Thu	Dec	17	15:08:58	GMT	2015			Completed			

ug044ArS			copy-runtime-resources							Thu	Dec	17	15:08:58	GMT	2015			Completed			

STavcRc8			pre-launch-command											Thu	Dec	17	15:08:58	GMT	2015			Completed			

HKrYfH6h			launch																							Thu	Dec	17	15:08:58	GMT	2015			Completed			

T1m8VXbq			post-launch-command										Thu	Dec	17	15:08:59	GMT	2015			Completed			

n8eK5USE			post-launch																		Thu	Dec	17	15:08:59	GMT	2015			Completed			

{::comment}

Scopes	in	CLI	commands
Many	commands	require	a	"scope"	expression	to	indicate	the	target	on	which	they	operate.	The	scope	expressions
are	as	follows	(values	in	brackets	are	aliases	for	the	scope):

	application		APP-ID	(app,	a)
Selects	an	application,	e.g.	"br	application	myapp"
	entity		ENT-ID	(ent,	e)
Selects	an	entity	within	an	application	scope,	e.g.		br	application	myapp	entity	myserver	
	effector		EFF-ID	(eff,	f)
Selects	an	effector	of	an	entity	or	application,	e.g.		br	a	myapp	e	myserver	eff	xyz	
	config		CONF-KEY	(conf,	con,	c)
Selects	a	configuration	key	of	an	entity	e.g.		br	a	myapp	e	myserver	config	jmx.agent.mode	
	activity		ACT-ID	(act,	v)
Selects	an	activity	of	an	entity	e.g.		br	a	myapp	e	myserver	act	iHG7sq1	

For	example

$	br	application	Tomcat	entity	tomcatServer	config

runs	the		config		command	with	application	scope	of		Tomcat		and	entity	scope	of		tomcatServer	.

{:/comment}

Monitoring	and	Managing	Applications

17



Next
We	will	look	next	at	a	slightly	more	complex	example,	which	will	illustrate	the	capabilities	of	Brooklyn's	policies
mechanism,	and	how	to	configure	dependencies	between	application	entities.

Monitoring	and	Managing	Applications

18



A	Clustered	Example
We'll	now	look	at	a	more	complex	example	that	better	shows	the	capabilities	of	Brooklyn,	including	management	of	a
running	clustered	application.

Below	is	the	annotated	blueprint.	Download	the	blueprint	into	a	text	file,		mycluster.yaml	,	in	your	workspace.	Before
you	create	an	application	with	it,	review	and/or	change	the	the	location	where	the	application	will	be	deployed.

You	will	need	four	machines	for	this	example:	one	for	the	load-balancer	(nginx),	and	three	for	the	Tomcat	cluster	(but
you	can	reduce	this	by	changing	the		maxPoolSize		below).

Hover	over	an	element	to	learn	more
This	message	will	go	away	in	3s
Describe	your	application
Start	by	giving	it	a	name,	optionally	adding	a	version	and	other	metadata.

	
name:	Tomcat	Cluster
Define	the	target	location
Blueprints	are	designed	for	portability.	Pick	from	dozens	of	clouds	in	hundreds	of	datacenters.	Or	machines	with	fixed
IP	addresses,	localhost,	Docker	on	Clocker,	etc.

Here	we	target	pre-existing	Vagrant	VMs.

	
location:	byon:	user:	vagrant	password:	vagrant	hosts:	-	10.10.10.101	-	10.10.10.102	-	10.10.10.103	-	10.10.10.104
Define	a	cluster
Choose	your	cluster	type.

Customize	with	config	keys,	such	as	the	initial	size.	Define	the	members	of	the	cluster.

	
services:	-	type:	org.apache.brooklyn.entity.group.DynamicCluster	name:	Cluster	id:	cluster	brooklyn.config:
cluster.initial.size:	1	dynamiccluster.memberspec:	$brooklyn:entitySpec:	type:
org.apache.brooklyn.entity.webapp.tomcat.TomcatServer	name:	Tomcat	Server	brooklyn.config:	wars.root:
http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hello-world-
webapp/0.8.0-incubating/brooklyn-example-hello-world-webapp-0.8.0-incubating.war
Tomcat	auto-repair	policy
For	each	member	of	the	cluster,	include	an	auto-repair	policy	that	restarts	the	service.

If	it	repeatedly	fails,	the	service	will	be	propagate	a	failure	notification.

	
brooklyn.policies:	-	type:	org.apache.brooklyn.policy.ha.ServiceRestarter	brooklyn.config:
failOnRecurringFailuresInThisDuration:	5m	brooklyn.enrichers:	-	type:
org.apache.brooklyn.policy.ha.ServiceFailureDetector	brooklyn.config:	entityFailed.stabilizationDelay:	30s
Cluster	auto-replace	policy
On	the	cluster,	handle	a	member's	failure	by	replacing	it	with	a	brand	new	member.

	
brooklyn.policies:	-	type:	org.apache.brooklyn.policy.ha.ServiceReplacer
Auto-scaling	policy
Auto-scale	the	cluster,	based	on	runtime	metrics	of	the	cluster.

For	a	simplistic	demonstration,	this	uses	requests	per	second.

Policies

19

http://clocker.io


	
-	type:	org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy	brooklyn.config:	metric:	webapp.reqs.perSec.perNode
metricUpperBound:	3	metricLowerBound:	1	resizeUpStabilizationDelay:	2s	resizeDownStabilizationDelay:	1m
maxPoolSize:	3
Aggregate	the	member's	metrics.
Add	an	enricher	to	aggregate	the	member's	requests	per	second.

For	a	simplistic	demonstration,	this	uses	requests	per	second.

	
brooklyn.enrichers:	-	type:	org.apache.brooklyn.enricher.stock.Aggregator	brooklyn.config:	enricher.sourceSensor:
$brooklyn:sensor("webapp.reqs.perSec.windowed")	enricher.targetSensor:
$brooklyn:sensor("webapp.reqs.perSec.perNode")	enricher.aggregating.fromMembers:	true	transformation:	average
Define	a	load-balancer
Add	a	load	balancer	entity.

Configure	it	to	monitor	and	balance	across	the	cluster	of	Tomcat	servers,	which	was	given:

id:	cluster

	
-	type:	org.apache.brooklyn.entity.proxy.nginx.NginxController	name:	Load	Balancer	(nginx)	brooklyn.config:
loadbalancer.serverpool:	$brooklyn:entity("cluster")	nginx.sticky:	false
</div></div>	</div>

Policies

20



The	following	section	provides	a	quick	summary	of	the	main	Brooklyn	concepts	you	will	encounter	in	Getting	Started.
For	further	discussion	of	these	concepts	see	The	Theory	Behind	Brooklyn,	and	the	detailed	descriptions	in	Brooklyn
Concepts.

Deployment	and	Management	Brooklyn	is	built	for	agile	deployment	of	applications	across	cloud	and	other	targets,
and	real-time	autonomic	management.	"Autonomic	computing"	is	the	concept	of	components	looking	after	themselves
where	possible	(self-healing,	self-optimizing,	etc).

Blueprints	A	blueprint	defines	an	application	by	specifying	its	components,	such	as	processes,	or	combinations	of
processes	across	multiple	machines	and	services.	The	blueprint	also	specifies	the	inter-relationships	between	the
configurations	of	the	components.

Entities	The	central	concept	in	a	Brooklyn	deployment	is	that	of	an	entity.	An	entity	represents	a	resource	under
management	(individual	machines	or	software	processes)	or	logical	collections	of	these.	Entities	are	arranged
hierarchically.	They	can	have	events,	operations,	and	processing	logic	associated	with	them,	and	it	is	through	this
mechanism	that	the	active	management	is	delivered.

Applications	are	the	top	level	entities	that	are	the	parents	of	all	other	entities.

Configuration	Entities	can	have	arbitrary	configuration	values,	which	get	inherited	by	their	child	entities.	You	can	set
global	(Brooklyn-wide)	properties	in	(	~/.brooklyn/brooklyn.properties	).	Common	configuration	keys	have	convenient
aliases	called	"flags".

Sensors	are	the	mechanism	for	entities	to	expose	information	for	other	entities	to	see.	Sensors	from	an	entity	can	be
subscribed	to	by	other	entities	to	track	changes	in	the	entity’s	activity.	Sensors	can	be	updated,	potentially	frequently,
by	the	entity	or	associated	tasks.

Effectors	are	the	mechanism	for	entities	to	expose	the	operations	that	can	be	invoked	on	it	by	other	entities.	The
invoker	is	able	to	track	the	execution	of	that	effector	with	tasks.

Lifecycle	The	management	context	of	Brooklyn	associates	a	"lifecycle"	with	Brooklyn	entities.	Common	operations
are	start,	stop,	and	restart	(whose	meaning	differs	slightly	for	applications	and	processes;	the	details	are	in	the
concepts	guide	linked	above).	Starting	an	application	results	in	the	start()	operation	being	performed	recursively
(typically	in	parallel)	on	the	application's	children.

Tasks	Lifecycle	and	other	operations	in	Brooklyn	are	tracked	as	tasks.	This	allows	current	and	past	processing	to	be
observed	by	operators,	and	processing	to	be	managed	across	multiple	management	nodes.

Locations	can	be	defined	in	order	to	specify	where	the	processes	of	an	application	will	run.	Brooklyn	supports
different	cloud	providers	and	pre-prepared	machines	(including	localhost),	known	as	"BYON"	(Bring	Your	Own
Nodes).

Policies	Policies	perform	the	active	management	enabled	by	Brooklyn.	Entities	can	have	Policy	instances	attached	to
them,	which	can	subscribe	to	sensors	from	other	entities	or	run	periodically.	When	they	run	they	can	perform
calculations,	look	up	other	values,	invoke	effectors	or	emit	sensor	values	from	the	entity	with	which	they	are
associated.

Enrichers	These	are	mechanisms	that	subscribe	to	a	sensor,	or	multiple	sensors,	and	output	a	new	sensor.	For
example,	the	enricher	which	sums	a	sensor	across	multiple	entities	(used	to	get	the	total	requests-per-second	for	all
the	web	servers	in	a	cluster),	and	the	enricher	which	calculates	a	60-second	rolling	average.

Concepts

21



Download	Version	NaN

Download File/Format checksums	(?)

Binary	distribution
Server	&	client

apache-brooklyn-NaN-bin.tar.gz SHA1

apache-brooklyn-NaN-bin.zip SHA1

RPM	package
CentOS7,	RHEL7,	etc. apache-brooklyn-NaN-1.noarch.rpm SHA1

DEB	package
Ubuntu,	Debian,	etc. apache-brooklyn-NaN.all.deb SHA1

Client	CLI	only apache-brooklyn-NaN-client-cli-linux.tar.gz SHA1

apache-brooklyn-NaN-client-cli-linux.zip SHA1

apache-brooklyn-NaN-client-cli-macosx.tar.gz SHA1

apache-brooklyn-NaN-client-cli-macosx.zip SHA1

apache-brooklyn-NaN-client-cli-windows.tar.gz SHA1

apache-brooklyn-NaN-client-cli-windows.zip SHA1

Source	code apache-brooklyn-NaN-src.tar.gz SHA1

apache-brooklyn-NaN-src.zip SHA1

Release	Notes
Release	notes	can	be	found	here.

Maven
If	you	use	Maven,	you	can	add	Brooklyn	with	the	following	in	your	pom:

<!--	include	all	Brooklyn	items	in	our	project	-->

				<dependencies>

								<dependency>

												<groupId>org.apache.brooklyn</groupId>

												<artifactId>brooklyn-all</artifactId>

												<version>{{	book.brooklyn-version	}}</version>

								</dependency>

				</dependencies>

	brooklyn-all		brings	in	all	dependencies,	including	jclouds.	If	you	prefer	a	smaller	repo	you	might	want	just		brooklyn-
core	,		brooklyn-policies	,	and	some	of		brooklyn-software-webapp	,		brooklyn-software-database	,		brooklyn-software-
messaging	,	or	others	(browse	the	full	list	here).

If	you	wish	to	use	the	Apache	snapshot	repo,	you	can	add	this	to	you		pom.xml	:

<!--	include	repos	for	snapshot	items	and	other	dependencies	-->

				<repositories>

								<repository>

												<id>apache-nexus-snapshots</id>

												<name>Apache	Nexus	Snapshots</name>

Downloads

22



												<url>https://repository.apache.org/content/repositories/snapshots</url>

												<releases>	<enabled>false</enabled>	</releases>

												<snapshots>	<enabled>true</enabled>	</snapshots>

								</repository>

				</repositories>

Source	Code
Source	code	is	hosted	at	github.com/apache/brooklyn,	with	this	version	in	branch	.	These	locations	have	a		README.md	
in	the	root	which	explains	how	to	get	the	code	including	submodules.

Useful	information	on	working	with	the	source	is	here.

Downloads

23

http://github.com/apache/brooklyn


The	central	concept	in	a	Brooklyn	deployment	is	that	of	an	entity.	An	entity	represents	a	resource	under
management,	either	base	entities	(individual	machines	or	software	processes)	or	logical	collections	of	these	entities.

Fundamental	to	the	processing	model	is	the	capability	of	entities	to	be	the	parent	of	other	entities	(the	mechanism	by
which	collections	are	formed),	with	every	entity	having	a	single	parent	entity,	up	to	the	privileged	top-level	application
entity.

Entities	are	code,	so	they	can	be	extended,	overridden,	and	modified.	Entities	can	have	events,	operations,	and
processing	logic	associated	with	them,	and	it	is	through	this	mechanism	that	the	active	management	is	delivered.

The	main	responsibilities	of	an	entity	are:

Provisioning	the	entity	in	the	given	location	or	locations
Holding	configuration	and	state	(attributes)	for	the	entity
Reporting	monitoring	data	(sensors)	about	the	status	of	the	entity
Exposing	operations	(effectors)	that	can	be	performed	on	the	entity
Hosting	management	policies	and	tasks	related	to	the	entity

Entities

24



All	entities	have	a	parent	entity,	which	creates	and	manages	it,	with	one	important	exception:	applications.	Application
entities	are	the	top-level	entities	created	and	managed	externally,	manually	or	programmatically.

Applications	are	typically	defined	in	Brooklyn	as	an	application	descriptor.	This	is	a	Java	class	specifying	the	entities
which	make	up	the	application,	by	extending	the	class		AbstractApplication	,	and	specifying	how	these	entities	should
be	configured	and	managed.

All	entities,	including	applications,	can	be	the	parent	of	other	entities.	This	means	that	the	"child"	is	typically	started,
configured,	and	managed	by	the	parent.	For	example,	an	application	may	be	the	parent	of	a	web	cluster;	that	cluster
in	turn	is	the	parent	of	web	server	processes.	In	the	management	console,	this	is	represented	hierarchically	in	a	tree
view.

A	parallel	concept	is	that	of	membership:	in	addition	to	one	fixed	parent,	and	entity	may	be	a	member	of	any	number
of	special	entities	called	groups.	Membership	of	a	group	can	be	used	for	whatever	purpose	is	required;	for	example,	it
can	be	used	to	manage	a	collection	of	entities	together	for	one	purpose	(e.g.	wide-area	load-balancing	between
locations)	even	though	they	may	have	been	created	by	different	parents	(e.g.	a	multi-tier	stack	within	a	location).

Application,	Parent	and	Membership

25



Configuration

All	entities	contain	a	map	of	config	information.	This	can	contain	arbitrary	values,	typically	keyed	under	static
	ConfigKey		fields	on	the		Entity		sub-class.	These	values	are	inherited,	so	setting	a	configuration	value	at	the
application	level	will	make	it	available	in	all	entities	underneath	unless	it	is	overridden.

Configuration	is	propagated	when	an	application	"goes	live"	(i.e.	it	becomes	"managed",	either	explicitly	or	when	its
	start()		method	is	invoked),	so	config	values	must	be	set	before	this	occurs.

Configuration	values	can	be	specified	in	a	configuration	file	(	brooklyn.cfg	)	to	apply	universally,	and/or
programmatically	to	a	specific	entity	and	its	descendants	by	calling		.configure(KEY,	VALUE)		in	the	entity	spec	when
creating	it.	There	is	also	an		entity.config().set(KEY,	VALUE)		method.

Additionally,	many	common	configuration	parameters	are	available	as	"flags"	which	can	be	supplied	as	Strings	when
constructing	then	entity,	in	the	form		EntitySpec.create˙(MyEntity.class).configure("config1",
"value1").configure("config2",	"value2")	.

Documentation	of	the	flags	available	for	individual	entities	can	normally	be	found	in	the	javadocs.	The		@SetFromFlag	
annotations	on		ConfigKey		static	field	definitions	in	the	entity's	interface	is	the	recommended	mechanism	for	exposing
configuration	options.

Sensors	and	Effectors

Sensors	(activity	information	and	notifications)	and	effectors	(operations	that	can	be	invoked	on	the	entity)	are
defined	by	entities	as	static	fields	on	the		Entity		subclass.

Sensors	can	be	updated	by	the	entity	or	associated	tasks,	and	sensors	from	an	entity	can	be	subscribed	to	by	its
parent	or	other	entities	to	track	changes	in	an	entity's	activity.

Effectors	can	be	invoked	by	an	entity's	parent	remotely,	and	the	invoker	is	able	to	track	the	execution	of	that	effector.
Effectors	can	be	invoked	by	other	entities,	but	use	this	functionality	with	care	to	prevent	too	many	managers!

An	entity	consists	of	a	Java	interface	(used	when	interacting	with	the	entity)	and	a	Java	class.	For	resilience.	it	is
recommended	to	store	the	entity's	state	in	attributes	(see		getAttribute(AttributeKey)	).	If	internal	fields	can	be	used
then	the	data	will	be	lost	on	brooklyn	restart,	and	may	cause	problems	if	the	entity	is	to	be	moved	to	a	different
brooklyn	management	node.

Configuration,	Sensors	and	Effectors

26



Under-the-covers,	at	heart	of	the	brooklyn	management	plane	is	the		ManagementContext	.	This	is	started	automatically
when	using	launching	an	application	using	the	brooklyn	CLI.	For	programmatic	use,	see
	BrooklynLauncher.newLauncher().launch()	.

A	Brooklyn	deployment	consists	of	many	entities	in	a	hierarchical	tree,	with	the	privileged	application	entity	at	the	top
level.

An	application	entity	(	Application		class)	is	responsible	for	starting	the	deployment	of	all	its	child	entities	(i.e.	the
entire	entity	tree	under	its	ownership).

An		Application	's		start()		method	begins	provisioning	the	child	entities	of	the	application	(and	their	entities,
recursively).

Provisioning	of	entities	typically	happens	in	parallel	automatically,	although	this	can	be	customized.	This	is
implemented	as	tasks	which	are	tracked	by	the	management	plane	and	is	accessible	in	the	web-based	management
console	and	REST	API.

Customized	provisioning	can	be	useful	where	two	starting	entities	depend	on	each	other.	For	example,	it	is	often
necessary	to	delay	start	of	one	entity	until	another	entity	reaches	a	certain	state,	and	to	supply	run-time	information
about	the	latter	to	the	former.

When	new	entities	are	created,	the	entity	is	wired	up	to	an	application	by	giving	it	a	parent.	The	entity	is	then	explicitly
"managed",	which	allows	other	entities	to	discover	it.

Typically	a	Brooklyn	deployment	has	a	single	management	context	which	records:

all	entities	under	management	that	are	reachable	by	the	application(s)	via	the	parent-child	relationships,
the	state	associated	with	each	entity,
subscribers	(listeners)	to	sensor	events	arising	from	the	entities,
active	tasks	(jobs)	associated	with	any	the	entity,
which	Brooklyn	management	node	is	mastering	(managing)	each	entity.

In	a	multi-location	deployment,	management	operates	in	all	regions,	with	brooklyn	entity	instances	being	mastered	in
the	relevant	region.

When	management	is	distributed	a	Brooklyn	deployment	may	consist	of	multiple	Brooklyn	management	nodes	each
with	a		ManagementContext		instance.

Lifecycle	and	ManagementContext

27



Under	the	covers	Brooklyn	has	a	sophisticated	sensor	event	and	subscription	model,	but	conveniences	around	this
model	make	it	very	simple	to	express	cross-entity	dependencies.	Consider	the	example	where	Tomcat	instances	need
to	know	the	URL	of	a	database	(or	a	set	of	URLs	to	connect	to	a	Monterey	processing	fabric,	or	other	entities)

setConfiguration(UsesJava.JAVA_OPTIONS,	ImmutableMap.of("mysql.url",	

								attributeWhenReady(mysql,	MySqlNode.MY_SQL_URL)	))

The		attributeWhenReady(Entity,	Sensor)		call	(a	static	method	on	the	class		DependentConfiguration	)	causes	the
configuration	value	to	be	set	when	that	given	entity's	attribue	is	ready.	In	the	example,		attributeWhenReady()		causes
the	JVM	system	property		mysql.url		to	be	set	to	the	value	of	the		MySqlNode.MY_SQL_URL		sensor	from		mysql		when
that	value	is	ready.	As	soon	as	the	database	URL	is	announced	by	the	MySql	entity,	the	configuration	value	will	be
available	to	the	Tomcat	cluster.

By	default	"ready"	means	being	set	(non-null)	and,	if	appropriate,	non-empty	(for	collections	and	strings)	or	non-zero
(for	numbers).	Formally	the	interpretation	of	ready	is	that	of	"Groovy	truth"	defined	by	an		asBoolean()		method	on	the
class	and	in	the	Groovy	language	extensions.

You	can	customize	"readiness"	by	supplying	a		Predicate		(Google	common)	or		Closure		(Groovy)	in	a	third
parameter.	This	evaluates	candidate	values	reported	by	the	sensor	until	one	is	found	to	be		true	.	For	example,
passing		{	it.size()>=3	}		as	the	readiness	argument	would	require	at	least	three	management	plane	URLs.

More	information	on	this	can	be	found	in	the	javadoc	for		DependentConfiguration	,	along	with	a	few	other	methods
such	as		valueWhenAttributeReady		which	allow	post-processing	of	an	attribute	value.

Note	that	if	the	value	of		CONFIG_KEY		passed	to		Entity.getConfig		is	a	Closure	or	Task	(such	as	returned	by
	attributeWhenReady	),	the	first	access	of		Entity.getConfig(CONFIG_KEY)		will	block	until	the	task	completes.	Typically
this	does	the	right	thing,	blocking	when	necessary	to	generate	the	right	start-up	sequence	without	the	developer
having	to	think	through	the	order,	but	it	can	take	some	getting	used	to.	Be	careful	not	to	request	config	information
until	really	necessary	(or	to	use	non-blocking	"raw"	mechanisms),	and	in	complicated	situations	be	ready	to	attend	to
circular	dependencies.	The	management	console	gives	useful	information	for	understanding	what	is	happening	and
resolving	the	cycle.

Dependent	Configuration

28



Entities	can	be	provisioned/started	in	the	location	of	your	choice.	Brooklyn	transparently	uses	jclouds	to	support
different	cloud	providers	and	to	support	BYON	(Bring	Your	Own	Nodes).

The	implementation	of	an	entity	(e.g.	Tomcat)	is	agnostic	about	where	it	will	be	installed/started.	When	writing	the
application	definition	specify	the	location	or	list	of	possible	locations	(	Location		instances)	for	hosting	the	entity.

	Location		instances	represent	where	they	run	and	indicate	how	that	location	(resource	or	service)	can	be	accessed.

For	example,	a		JBoss7Server		will	usually	be	running	in	an		SshMachineLocation	,	which	contains	the	credentials	and
address	for	sshing	to	the	machine.	A	cluster	of	such	servers	may	be	running	in	a		MachineProvisioningLocation	,
capable	of	creating	new		SshMachineLocation		instances	as	required.

Location

29

http://www.jclouds.org


Policies	perform	the	active	management	enabled	by	Brooklyn.	Entities	can	have	zero	or	more		Policy		instances
attached	to	them.

Policies	can	subscribe	to	sensors	from	entities	or	run	periodically,	and	when	they	run	they	can	perform	calculations,
look	up	other	values,	and	if	deemed	necessary	invoke	effectors	or	emit	sensor	values	from	the	entity	with	which	they
are	associated.

Policies

30



All	processing,	whether	an	effector	invocation	or	a	policy	cycle,	are	tracked	as	tasks.	This	allows	several	important
capabilities:

active	and	historic	processing	can	be	observed	by	operators
the	invocation	context	is	available	in	the	thread,	to	check	entitlement	(permissions)	and	maintain	a	hierarchical
causal	chain	even	when	operations	are	run	in	parallel
processing	can	be	managed	across	multiple	management	nodes

Some	executions	create	new	entities,	which	can	then	have	tasks	associated	with	them,	and	the	system	will	record,	for
example,	that	a	start	effector	on	the	new	entity	is	a	task	associated	with	that	entity,	with	that	task	created	by	a	task
associated	with	a	different	entity.

The	execution	of	a	typical	overall	start-up	sequence	is	shown	below:

Integration
One	vital	aspect	of	Brooklyn	is	its	ability	to	communicate	with	the	systems	it	starts.	This	is	abstracted	using	a	driver
facility	in	Brooklyn,	where	a	driver	describes	how	a	process	or	service	can	be	installed	and	managed	using	a
particular	technology.

For	example,	a		TomcatServer		may	implement	start	and	other	effectors	using	a		TomcatSshDriver		which	inherits	from
	JavaSoftwareProcessSshDriver		(for	JVM	and	JMX	start	confguration),	inheriting	from
	AbstractSoftwareProcessSshDriver		(for	SSH	scripting	support).

Particularly	for	sensors,	some	technologies	are	used	so	frequently	that	they	are	packaged	as	feeds	which	can
discover	their	configuration	(including	from	drivers).	These	include	JMX	and	HTTP	(see		JmxFeed		and		HttpFeed	).

Brooklyn	comes	with	entity	implementations	for	a	growing	number	of	commonly	used	systems,	including	various	web
application	servers,	databases	and	NoSQL	data	stores,	and	messaging	systems.

Execution

31



Many	entities	expose		start	,		stop		and		restart		effectors.	The	semantics	of	these	operations	(and	the	parameters
they	take)	depends	on	the	type	of	entity.

Top-level	applications
A	top-level	application	is	a	grouping	of	other	entities,	pulling	them	together	into	the	"application"	of	your	choice.	This
could	range	from	a	single	app-server,	to	an	app	that	is	a	composite	of	a	no-sql	cluster	(e.g.	MongoDB	sharded	cluster,
or	Cassandra	spread	over	multiple	datacenters),	a	cluster	of	load-balanced	app-servers,	message	brokers,	etc.

start(Collection	<Location>)

This	will	start	the	application	in	the	given	location(s).	Each	child-entity	within	the	application	will	be	started
concurrently,	passing	the	location(s)	to	each	child.	The	start	effector	will	be	called	automatically	when	the	application
is	deployed	through	the	catalog.	Is	is	strongly	recommended	to	not	call	start	again.

stop()

Stop	will	terminate	the	application	and	all	its	child	entities	(including	releasing	all	their	resources).	The	application	will
also	be	unmanaged,	removing	it	from	Brooklyn.

restart()

This	will	invoke		restart()		on	each	child-entity	concurrently	(with	the	default	values	for	the	child-entity's	restart
effector	parameters).	Is	is	strongly	recommended	to	not	call	this,	unless	the	application	has	been	explicitly	written	to
implement	restart.

Software	Process	(e.g	MySql,	Tomcat,	JBoss	app-server,
MongoDB)

start(Collection	<Location>)

This	will	start	the	software	process	in	the	given	location.	If	a	machine	location	is	passed	in,	then	the	software	process
is	started	there.	If	a	cloud	location	is	passed	in,	then	a	new	VM	will	be	created	in	that	cloud	-	the	software	process	will
be	installed+launched	on	that	new	VM.

The	start	effector	will	have	been	called	automatically	when	deploying	an	application	through	the	catalog.	In	normal
usage,	do	not	invoke	start	again.

If	calling		start()		a	second	time,	with	no	locations	passed	in	(e.g.	an	empty	list),	then	it	will	go	through	the	start
sequence	on	the	existing	location	from	the	previous	call.	It	will	install+customize+launch	the	process.	For	some
entities,	this	could	be	dangerous.	The	customize	step	might	execute	a	database	initialisation	script,	which	could	cause
data	to	be	overwritten	(depending	how	the	initialisation	script	was	written).

If	calling		start()		a	second	time	with	additional	locations,	then	these	additional	locations	will	be	added	to	the	set	of
locations.	In	normal	usage	it	is	not	recommended.	This	could	be	desired	behaviour	if	the	entity	had	previously	been
entirely	stopped	(including	its	VM	terminated)	-	but	for	a	simple	one-entity	app	then	you	might	as	well	have	deleted	the
entire	app	and	created	a	new	one.

stop(boolean	stopMachine)

Stop/start/restart	behaviour

32



If		stopMachine==true	,	this	effector	will	stop	the	software	process	and	then	terminate	the	VM	(if	a	VM	had	been	created
as	part	of		start()	).	This	behaviour	is	the	inverse	of	the	first		start()		effector	call.	When	stopping	the	software
process,	it	does	not	uninstall	the	software	packages	/	files.

If		stopMachine==false	,	this	effector	will	stop	just	the	software	process	(leaving	the	VM	and	all	configuration	files	/
install	artifacts	in	place).

restart(boolean	restartMachine,	boolean	restartChildren)

This	will	restart	the	software	process.

If		restartMachine==true	,	it	will	also	terminate	the	VM	and	create	a	new	VM.	It	will	then	install+customize+launch	the
software	process	on	the	new	VM.	It	is	equivalent	of	invoking		stop(true)		and	then		start(Collections.EMPTY_LIST)	.	If
	restartMachine==false	,	it	will	first	attempt	to	stop	the	software	process	(which	should	be	a	no-op	if	the	process	is	not
running),	and	will	then	start	the	software	process	(without	going	through	the	install+customize	steps).

If		restartChildren==true	,	then	after	restarting	itself	it	will	call		restart(restartMachine,	restartChildren)		on	each
child-entity	concurrently.

Recommended	operations
The	recommended	operations	to	invoke	to	stop	just	the	software	process,	and	then	to	restart	it	are:

Select	the	software	process	entity	in	the	tree	(not	the	parent	application,	but	the	child	of	that	application).
Invoke		stop(stopMachine=false)	
Invoke		restart(restartMachine=false,	restartChildren=false)	

Stop/start/restart	behaviour

33



Writing	Blueprints

34



A	First	Blueprint
The	easiest	way	to	write	a	blueprint	is	as	a	YAML	file.	This	follows	the	OASIS	CAMP	plan	specification,	with	some
extensions	described	below.	(A	YAML	reference	has	more	information,	and	if	the	YAML	doesn't	yet	do	what	you	want,
it's	easy	to	add	new	extensions	using	your	favorite	JVM	language.)

The	Basic	Structure

Here's	a	very	simple	YAML	blueprint	plan,	to	explain	the	structure:

name:	simple-appserver

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

The		name		is	just	for	the	benefit	of	us	humans.

The		location		specifies	where	this	should	be	deployed.	If	you've	set	up	passwordless	localhost	SSH	access	you
can	use		localhost		as	above,	but	if	not,	just	wait	ten	seconds	for	the	next	example.

The		services		block	takes	a	list	of	the	typed	services	we	want	to	deploy.	This	is	the	meat	of	the	blueprint	plan,	as
you'll	see	below.

Finally,	the	clipboard	in	the	top-right	corner	of	the	example	plan	box	above	(hover	your	cursor	over	the	box)	lets	you
easily	copy-and-paste	into	the	web-console:	simply	download	and	launch	Brooklyn,	then	in	the	"Create	Application"
dialog	at	the	web	console	(usually	http://127.0.0.1:8081/,	paste	the	copied	YAML	into	the	"Yaml"	tab	of	the	dialog	and
press	"Finish".	There	are	several	other	ways	to	deploy,	including		curl		and	via	the	command-line,	and	you	can
configure	users,	https,	persistence,	and	more,	as	described	in	the	ops	guide.

Creating	YAML	Blueprint

35

https://www.oasis-open.org/committees/camp/
http://127.0.0.1:8081/


More	Information

Topics	to	explore	next	on	the	topic	of	YAML	blueprints	are:

Plenty	of	examples	of	blueprints	exist	in	the	Brooklyn	codebase,	so	another	starting	point	is	to		git	clone		it	and
search	for		*.yaml		files	therein.

Brooklyn	lived	as	a	Java	framework	for	many	years	before	we	felt	confident	to	make	a	declarative	front-end,	so	you
can	do	pretty	much	anything	you	want	to	by	dropping	to	the	JVM.	For	more	information	on	Java:

start	with	a	Maven	archetype
see	all	Brooklyn	Java	guide	topics
look	at	test	cases	in	the	codebase

You	can	also	come	talk	to	us,	on	IRC	(#brooklyncentral	on	Freenode)	or	any	of	the	usual	hailing	frequencies,	as	these
documents	are	a	work	in	progress.

Creating	YAML	Blueprint

36

https://github.com/apache/brooklyn


Within	a	blueprint	or	catalog	item,	entities	can	be	configured.	The	rules	for	setting	this	configuration,	including	when
composing	and	extending	existing	entities,	is	described	in	this	section.

Basic	Configuration

Within	a	YAML	file,	entity	configuration	should	be	supplied	within	a		brooklyn.config		map.	It	is	also	possible	to	supply
configuration	at	the	top-level	of	the	entity.	However,	that	approach	is	discouraged	as	it	can	sometimes	be	ambiguous
(e.g.	if	the	config	key	is	called	"name"	or	"type"),	and	also	it	does	not	work	in	all	contexts	such	as	for	an	enricher's
configuration.

A	simple	example	is	shown	below:

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer

		brooklyn.config:

				webapp.enabledProtocols:	http

				http.port:	9080

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-webapp/0.9.0/brooklyn-example-hello-world-webapp-0.9.0.war

If	no	config	value	is	supplied,	the	default	for	that	config	key	will	be	used.	For	example,		http.port		would	default	to
8080	if	not	explicitly	supplied.

Some	config	keys	also	have	a	short-form	(e.g.		httpPort		instead	of		http.port		would	also	work	in	the	YAML	example
above).	However,	that	approach	is	discouraged	as	it	does	not	work	in	all	contexts	such	as	for	inheriting	configuration
from	a	parent	entity.

Configuration	in	a	Catalog	Item

When	defining	an	entity	in	the	catalog,	it	can	include	configuration	values	like	any	other	blueprint	(i.e.	inside	the
	brooklyn.config		block).

It	can	also	explicitly	declare	config	keys,	using	the		brooklyn.parameters		block.	The	example	below	illustrates	the
principle:

brooklyn.catalog:

		items:

		-	id:	entity-config-example

				itemType:	entity

				name:	Entity	Config	Example

				item:

						type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

						brooklyn.parameters:

						-	name:	custom.message

								type:	string

								description:	Message	to	be	displayed

								default:	Hello

						brooklyn.config:

								shell.env:

										MESSAGE:	$brooklyn:config("custom.message")

								launch.command:	|

										echo	"My	example	launch	command:	$MESSAGE"

								checkRunning.command:	|

										echo	"My	example	checkRunning	command:	$MESSAGE"

Once	added	to	the	catalog,	it	can	be	used	with	the	simple	blueprint	below	(substituting	the	location	of	your	choice).
Because	no	configuration	has	been	overridden,	this	will	use	the	default	value	for		custom.message	,	and	will	use	the
given	values	for		launch.command		and		checkRunning.command	:

Entity	Configuration

37



location:	aws-ec2:us-east-1

services:

-	type:	entity-config-example

For	details	of	how	to	write	and	add	catalog	items,	see	Catalog.

Config	Key	Constraints

The	config	keys	in	the		brooklyn.parameters		can	also	have	constraints	defined,	for	what	values	are	valid.	If	more	than
one	constraint	is	defined,	then	they	must	all	be	satisfied.	The	constraints	can	be	any	of:

	required	:	deployment	will	fail	if	no	value	is	supplied	for	this	config	key.
	regex:	...	:	the	value	will	be	compared	against	the	given	regular	expression.
A	predicate,	declared	using	the	DSL		$brooklyn:object	.

This	is	illustrated	in	the	example	below:

brooklyn.catalog:

		items:

		-	id:	entity-constraint-example

				itemType:	entity

				name:	Entity	Config	Example

				item:

						type:	org.apache.brooklyn.entity.stock.BasicEntity

						brooklyn.parameters:

						-	name:	compulsoryExample

								type:	string

								constraints:

								-	required

						-	name:	addressExample

								type:	string

								constraints:

								-	regex:	^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$

						-	name:	numberExample

								type:	double

								constraints:

								-	$brooklyn:object:

												type:	org.apache.brooklyn.util.math.MathPredicates

												factoryMethod.name:	greaterThan

												factoryMethod.args:

												-	0.0

								-	$brooklyn:object:

												type:	org.apache.brooklyn.util.math.MathPredicates

												factoryMethod.name:	lessThan

												factoryMethod.args:

												-	256.0

An	example	usage	of	this	toy	example,	once	added	to	the	catalog,	is	shown	below:

services:

-	type:	entity-constraint-example

		brooklyn.config:

				compulsoryExample:	foo

				addressExample:	1.1.1.1

				numberExample:	2.0

Inheriting	Configuration

Configuration	can	be	inherited	from	a	super-type,	and	from	a	parent	entity	in	the	runtime	management	hierarchy.	This
applies	to	entities	and	locations.	In	a	future	release,	this	will	be	extended	to	also	apply	to	policies	and	enrichers.

Entity	Configuration

38



When	a	blueprint	author	defines	a	config	key,	they	can	explicitly	specify	the	rules	for	inheritance	(both	for	super/sub-
types,	and	for	the	runtime	management	hiearchy).	This	gives	great	flexibilty,	but	should	be	used	with	care	so	as	not	to
surprise	users	of	the	blueprint.

The	default	behaviour	is	outlined	below,	along	with	examples	and	details	of	how	to	explilcitly	define	the	desired
behaviour.

Normal	Configuration	Precedence

There	are	several	places	that	a	configuration	value	can	come	from.	If	different	values	are	specified	in	multiple	places,
then	the	order	of	precedence	is	as	listed	below:

1.	 Configuration	on	the	entity	itself
2.	 Inherited	configuration	from	the	super-type
3.	 Inherited	configuration	from	the	runtime	type	hierarchy
4.	 The	config	key's	default	value

Inheriting	Configuration	from	Super-type

When	using	an	entity	from	the	catalog,	its	configuration	values	can	be	overridden.	For	example,	consider	the		entity-
config-example		added	to	the	catalog	in	the	section	Configuration	in	a	Catalog	Item.	We	can	override	these	values.	If
not	overridden,	then	the	existing	values	from	the	super-type	will	be	used:

location:	aws-ec2:us-east-1

services:

-	type:	entity-config-example

		brooklyn.config:

				custom.message:	Goodbye

				launch.command:	|

						echo	"Sub-type	launch	command:	$MESSAGE"

In	this	example,	the		custom.message		overrides	the	default	defined	on	the	config	key.	The		launch.command		overrides
the	original	command.	The	other	config	(e.g.		checkRunning.command	)	is	inherited	unchanged.

It	will	write	out:		Sub-type	launch	command:	Goodbye	.

Inheriting	Configuration	from	a	Parent	in	the	Runtime	Management
Hieararchy

Configuration	passed	to	an	entity	is	inherited	by	all	child	entities,	unless	explicitly	overridden.

In	the	example	below,	the		wars.root		config	key	is	inherited	by	all	TomcatServer	entities	created	under	the	cluster,	so
they	will	use	that	war:

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-webapp/0.9.0/brooklyn-example-hello-world-webapp-0.9.0.war

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer

In	the	above	example,	it	would	be	better	to	have	specified	the		wars.root		configuration	in	the		TomcatServer		entity
spec,	rather	than	at	the	top	level.	This	would	make	it	clearer	for	the	reader	what	is	actually	being	configured.

Entity	Configuration

39



The	technique	of	inherited	config	can	simplify	some	blueprints,	but	care	should	be	taken.	For	more	complex
(composite)	blueprints,	this	can	be	difficult	to	use	safely;	it	relies	on	knowledge	of	the	internals	of	the	child
components.	For	example,	the	inherited	config	may	impact	multiple	sub-components,	rather	than	just	the	specific
entity	to	be	changed.	This	is	particularly	true	when	using	complex	items	from	the	catalog,	and	when	using	common
config	values	(e.g.		install.version	).

An	alternative	approach	is	to	declare	the	expected	configuration	options	at	the	top	level	of	the	catalog	item,	and	then
(within	the	catalog	item)	explicitly	inject	those	values	into	the	correct	sub-components.	Users	of	this	catalog	item
would	set	only	those	exposed	config	options,	rather	than	trying	to	inject	config	directly	into	the	nested	entities.

DSL	Evaluation	of	Inherited	Config

When	writing	blueprints	that	rely	on	inheritance	from	the	runtime	management	hierarchy,	it	is	important	to	understand
how	config	keys	that	use	DSL	will	be	evaluated.	In	particular,	when	evaluating	a	DSL	expression,	it	will	be	done	in	the
context	of	the	entity	declaring	the	config	value	(rather	than	on	the	entity	using	the	config	value).

For	example,	consider	the	config	value		$brooklyn:attributeWhenReady("host.name")		declared	on	entity	X,	and	inherited
by	child	entity	Y.	If	entity	Y	uses	this	config	value,	it	will	get	the	"host.name"	attribute	of	entity	X.

Below	is	another	(contrived!)	example	of	this	DSL	evaluation.	When	evaluating		refExampleConfig	,	it	retrievies	the
value	of		exampleConfig		which	is	the	DSL	expression,	and	evaluates	this	in	the	context	of	the	parent	entity	that
declares	it.	Therefore		$brooklyn:config("ownConfig")		returns	the	parent's		ownConfig		value,	and	the	final	result	for
	refExampleConfig		is	set	to	"parentValue":

services:

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		brooklyn.config:

				ownConfig:	parentValue

				exampleConfig:	$brooklyn:config("ownConfig")

		brooklyn.children:

		-	type:	org.apache.brooklyn.entity.stock.BasicEntity

				brooklyn.config:

						ownConfig:	childValue

						refExampleConfig:	$brooklyn:config("exampleConfig")

However,	the	web-console	also	shows	other	misleading	(incorrect!)	config	values	for	the	child	entity.	It	shows	the
inherited	config	value	of		exampleConfig		as	"childValue"	(because	the	REST	api	did	not	evaluate	the	DSL	in	the
correct	context,	when	retrieving	the	value!	See	https://issues.apache.org/jira/browse/BROOKLYN-455.

Merging	Configuration	Values

For	some	configuration	values,	the	most	logical	behaviour	is	to	merge	the	configuration	value	with	that	in	the	super-
type.	This	depends	on	the	type	and	meaning	of	the	config	key,	and	is	thus	an	option	when	defining	the	config	key.

Currently	it	is	only	supported	for	merging	config	keys	of	type	Map.

Some	common	config	keys	will	default	to	merging	the	values	from	the	super-type.	These	config	keys
include	those	below.	The	value	is	merged	with	that	of	its	super-type	(but	will	not	be	merged	with	the	value	on	a	parent
entity):

	shell.env	:	a	map	of	environment	variables	to	pass	to	the	runtime	shell
	files.preinstall	:	a	mapping	of	files,	to	be	copied	before	install,	to	destination	name	relative	to	installDir
	templates.preinstall	:	a	mapping	of	templates,	to	be	filled	in	and	copied	before	pre-install,	to	destination	name
relative	to	installDir
	files.install	:	a	mapping	of	files,	to	be	copied	before	install,	to	destination	name	relative	to	installDir

Entity	Configuration

40

https://issues.apache.org/jira/browse/BROOKLYN-455


	templates.install	:	a	mapping	of	templates,	to	be	filled	in	and	copied	before	install,	to	destination	name	relative
to	installDir
	files.runtime	:	a	mapping	of	files,	to	be	copied	before	customisation,	to	destination	name	relative	to	runDir
	templates.runtime	:	a	mapping	of	templates,	to	be	filled	in	and	copied	before	customisation,	to	destination	name
relative	to	runDir
	provisioning.properties	:	custom	properties	to	be	passed	in	when	provisioning	a	new	machine

A	simple	example	of	merging		shell.env		is	shown	below	(building	on	the		entity-config-example		in	the	section
Configuration	in	a	Catalog	Item).	The	environment	variables	will	include	the		MESSAGE		set	in	the	super-type	and	the
	MESSAGE2		set	here:

location:	aws-ec2:us-east-1

services:

-	type:	entity-config-example

		brooklyn.config:

				shell.env:

						MESSAGE2:	Goodbye

				launch.command:	|

						echo	"Different	example	launch	command:	$MESSAGE	and	$MESSAGE2"

To	explicitly	remove	a	value	from	the	super-type's	map	(rather	than	adding	to	it),	a	blank	entry	can	be	defined.

Entity	provisioning.properties:	Overriding	and	Merging

An	entity	(which	extends		SoftwareProcess	)	can	define	a	map	of		provisioning.properties	.	If	the	entity	then	provisions
a	location,	it	passes	this	map	of	properties	to	the	location	for	obtaining	the	machine.	These	properties	will	override	and
augment	the	configuration	on	the	location	itself.

When	deploying	to	a	jclouds	location,	one	can	specify		templateOptions		(of	type	map).	Rather	than	overriding,	these
will	be	merged	with	any	templateOptions	defined	on	the	location.

In	the	example	below,	the	VM	will	be	provisioned	with	minimum	2G	ram	and	minimum	2	cores.	It	will	also	use	the
merged	template	options	value	of		{placementGroup:	myPlacementGroup,	securityGroupIds:	sg-000c3a6a}	:

location:

		aws-ec2:us-east-1:

				minRam:	2G

				templateOptions:

						placementGroup:	myPlacementGroup

services:

-	type:	org.apache.brooklyn.entity.machine.MachineEntity

		brooklyn.config:

				provisioning.properties:

						minCores:	2

						templateOptions:

								securityGroupIds:	sg-000c3a6a

The	merging	of		templateOptions		is	shallow	(i.e.	maps	within	the		templateOptions		are	not	merged).	In	the	example
below,	the		userMetadata		value	within		templateOptions		will	be	overridden	by	the	entity's	value,	rather	than	the	maps
being	merged;	the	value	used	when	provisioning	will	be		{key2:	val2}	:

location:

		aws-ec2:us-east-1:

				templateOptions:

						userMetadata:

								key1:	val1

services:

-	type:	org.apache.brooklyn.entity.machine.MachineEntity

		brooklyn.config:

Entity	Configuration

41



				provisioning.properties:

						userMetadata:

								key2:	val2

Re-inherited	Versus	not	Re-inherited

For	some	configuration	values,	the	most	logical	behaviour	is	for	an	entity	to	"consume"	the	config	key's	value,	and
thus	not	pass	it	down	to	children	in	the	runtime	type	hierarchy.	This	is	called	"not	re-inherited".

Some	common	config	keys	that	will	not	re-inherited	include:

	install.command		(and	the		pre.install.command		and		post.install.command	)
	customize.command		(and	the		pre.customize.command		and		post.customize.command	)
	launch.command		(and	the	 	̀ pre.launch.command		and		post.launch.command	)
	checkRunning.command	

	stop.command	

The	similar	commands	for		VanillaWindowsProcess		powershell.
The	file	and	template	install	config	keys	(e.g.		files.preinstall	,		templates.preinstall	,	etc)

An	example	is	shown	below.	Here,	the	"logstash-child"	is	a	sub-type	of		VanillaSoftwareProcess	,	and	is	co-located	on
the	same	VM	as	Tomcat.	We	don't	want	the	Tomcat's	configuration,	such	as		install.command	,	to	be	inherited	by	the
logstash	child.	If	it	was	inherited,	the	logstash-child	entity	might	re-execute	the	Tomcat's	install	command!	Instead,	the
	install.command		config	is	"consumed"	by	the	Tomcat	instance	and	is	not	re-inherited:

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

		brooklyn.config:

				children.startable.mode:	background_late

		brooklyn.children:

		-	type:	logstash-child

				brooklyn.config:

						logstash.elasticsearch.host:	$brooklyn:entity("es").attributeWhenReady("urls.http.withBrackets")

...

"Not	re-inherited"	differs	from	"never	inherited".	The	example	below	illustrates	the	difference,	though	this	use	is
discouraged	(it	is	mostly	for	backwards	compatibility).	The		post.install.command		is	not	consumed	by	the
	BasicApplication	,	so	will	be	inherited	by	the		Tomcat8Server		which	will	consume	it.	The	config	value	will	therefore	not
be	inherited	by	the		logstash-child	.

services:

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		brooklyn.config:

				post.install.command:	echo	"My	post.install	command"

		brooklyn.children:

		-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

				brooklyn.config:

						children.startable.mode:	background_late

				brooklyn.children:

				-	type:	logstash-child

						brooklyn.config:

								logstash.elasticsearch.host:	$brooklyn:entity("es").attributeWhenReady("urls.http.withBrackets")

...

Never	Inherited

For	some	configuration	values,	the	most	logical	behaviour	is	for	the	value	to	never	be	inherited	in	the	runtime
management	hiearchy.

Entity	Configuration

42



Some	common	config	keys	that	will	never	inherited	include:

	defaultDisplayName	:	this	is	the	name	to	use	for	the	entity,	if	an	explicit	name	is	not	supplied.	This	is	particularly
useful	when	adding	an	entity	in	a	catalog	item	(so	if	the	user	does	not	give	a	name,	it	will	get	a	sensible	default).
It	would	not	be	intuitive	for	all	the	children	of	that	entity	to	also	get	that	default	name.

	id	:	the	id	of	an	entity	(as	supplied	in	the	YAML,	to	allow	references	to	that	entity)	is	not	inherited.	It	is	the	id	of
that	specific	entity,	so	must	not	be	shared	by	all	its	children.

Inheritance	Modes:	Deep	Dive

The	javadoc	in	the	code	is	useful	for	anyone	who	wants	to	go	deep!	See
	org.apache.brooklyn.config.BasicConfigInheritance		and		org.apache.brooklyn.config.ConfigInheritances		in	the	repo
https://github.com/apache/brooklyn-server.

When	defining	a	new	config	key,	the	exact	semantics	for	inheritance	can	be	defined.	There	are	separate	options	to
control	config	inheritance	from	the	super-type,	and	config	inheritance	from	the	parent	in	the	runtime	management
hierarchy.

The	possible	modes	are:

	NEVER_INHERITED	:	indicates	that	a	key's	value	should	never	be	inherited	(even	if	defined	on	an	entity	that	does	not
know	the	key).	Most	usages	will	prefer		NOT_REINHERITED	.

	NOT_REINHERITED	:	indicates	that	a	config	key	value	(if	used)	should	not	be	passed	down	to	children	/	sub-types.
Unlike		NEVER_INHERITED	,	these	values	can	be	passed	down	if	they	are	not	used	by	the	entity	(i.e.	if	the	entity	does
not	expect	it).	However,	when	used	by	a	child,	it	will	not	be	passed	down	any	further.	If	the	inheritor	also	defines	a
value	the	parent's	value	is	ignored	irrespective	(as	in		OVERWRITE	;	see		NOT_REINHERITED_ELSE_DEEP_MERGE		if
merging	is	desired).

	NOT_REINHERITED_ELSE_DEEP_MERGE	:	as		NOT_REINHERITED		but	in	cases	where	a	value	is	inherited	because	a	parent
did	not	recognize	it,	if	the	inheritor	also	defines	a	value	the	two	values	should	be	merged.

	OVERWRITE	:	indicates	that	if	a	key	has	a	value	at	both	an	ancestor	and	a	descendant,	the	descendant	and	his
descendants	will	prefer	the	value	at	the	descendant.

	DEEP_MERGE	:	indicates	that	if	a	key	has	a	value	at	both	an	ancestor	and	a	descendant,	the	descendant	and	his
descendants	should	attempt	to	merge	the	values.	If	the	values	are	not	mergable,	behaviour	is	undefined	(and
often	the	descendant's	value	will	simply	overwrite).

Explicit	Inheritance	Modes

The	YAML	support	for	explicitly	defining	the	inheritance	mode	is	still	work-in-progress.	The	options	documented	below
will	be	enhanced	in	a	future	version	of	Brooklyn,	to	better	support	the	modes	described	above.

In	a	YAML	blueprint,	within	the		brooklyn.parameters		section	for	declaring	new	config	keys,	one	can	set	the	mode	for
	inheritance.type		and		inheritance.parent		(i.e.	for	inheritance	from	the	super-type,	and	inheritance	in	the	runtime
management	hierarchy).	The	possible	values	are:

	deep_merge	:	the	inherited	and	the	given	value	should	be	merged;	maps	within	the	map	will	also	be	merged
	always	:	the	inherited	value	should	be	used,	unless	explicitly	overridden	by	the	entity
	none	:	the	value	should	not	be	inherited;	if	there	is	no	explicit	value	on	the	entity	then	the	default	value	will	be
used

Below	is	a	(contrived!)	example	of	inheriting	the		example.map		config	key.	When	using	this	entity	in	a	blueprint,	the
entity's	config	will	be	merged	with	that	defined	in	the	super-type,	and	the	parent	entity's	value	will	never	be	inherited:

Entity	Configuration

43

https://github.com/apache/brooklyn-server


brooklyn.catalog:

		items:

		-	id:	entity-config-inheritance-example

				version:	"1.1.0-SNAPSHOT"

				itemType:	entity

				name:	Entity	Config	Inheritance	Example

				item:

						type:	org.apache.brooklyn.entity.machine.MachineEntity

						brooklyn.parameters:

						-	name:	example.map

								type:	java.util.Map

								inheritance.type:	deep_merge

								inheritance.parent:	none

								default:

										MESSAGE_IN_DEFAULT:	InDefault

						brooklyn.config:

								example.map:

										MESSAGE:	Hello

The	blueprints	below	demonstrate	the	various	permutations	for	setting	configuration	for	the	config		example.map	.	This
can	be	inspected	by	looking	at	the	entity's	config.	The	config	we	see	for	app1	is	the	inherited		{MESSAGE:	"Hello"}	;	in
app2	we	define	additional	configuration,	which	will	be	merged	to	give		{MESSAGE:	"Hello",	MESSAGE_IN_CHILD:
"InChild"}	;	in	app3,	the	config	from	the	parent	is	not	inherited	because	there	is	an	explicit	inheritance.parent	of
"none",	so	it	just	has	the	value		{MESSAGE:	"Hello"}	;	in	app4	again	the	parent's	config	is	ignored,	with	the	super-type
and	entity's	config	being	merged	to	give		{MESSAGE:	"Hello",	MESSAGE_IN_CHILD:	"InChild"}	.

location:	aws-ec2:us-east-1

services:

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		name:	app1

		brooklyn.children:

		-	type:	entity-config-inheritance-example

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		name:	app2

		brooklyn.children:

		-	type:	entity-config-inheritance-example

				brooklyn.config:

						example.map:

								MESSAGE_IN_CHILD:	InChild

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		name:	app3

		brooklyn.config:

				example.map:

						MESSAGE_IN_PARENT:	InParent

		brooklyn.children:

		-	type:	entity-config-inheritance-example

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		name:	app4

		brooklyn.config:

				example.map:

						MESSAGE_IN_PARENT:	InParent

		brooklyn.children:

		-	type:	entity-config-inheritance-example

				brooklyn.config:

						example.map:

								MESSAGE_IN_CHILD:	InChild

A	limitations	of		inheritance.parent		is	when	inheriting	values	from	parent	and	grandparent	entities:	a	value	specified
on	the	parent	will	override	(rather	than	be	merged	with)	the	value	on	the	grandparent.

Entity	Configuration

44



Merging	Policy	and	Enricher	Configuration	Values

A	current	limitation	is	that	sub-type	inheritance	is	not	supported	for	configuration	of	policies	and	enrichers.	The	current
behaviour	is	that	config	is	not	inherited.	The	concept	of	inheritance	from	the	runtime	management	hierarchy	does	not
apply	for	policies	and	enrichers	(they	do	not	have	"parents";	they	are	attached	to	an	entity).

Entity	Configuration

45



Brooklyn	supports	a	very	wide	range	of	target	locations.	With	deep	integration	to	Apache	jclouds,	most	well-known
clouds	and	cloud	platforms	are	supported.	See	the	Locations	guide	for	details	and	more	examples.

Cloud	Example

The	following	example	is	for	Amazon	EC2:

name:	simple-appserver-with-location

location:

		jclouds:aws-ec2:

				region:	us-east-1

				identity:	AKA_YOUR_ACCESS_KEY_ID

				credential:	<access-key-hex-digits>

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

(You'll	need	to	replace	the		identity		and		credential		with	the	"Access	Key	ID"	and	"Secret	Access	Key"	for	your
account,	as	configured	in	the	AWS	Console.)

Other	popular	public	clouds	include		softlayer	,		google-compute-engine	,	and		rackspace-cloudservers-us	.	Private
cloud	systems	including		openstack-nova		and		cloudstack		are	also	supported,	although	for	these	you'll	supply	an
	endpoint:	https://9.9.9.9:9999/v2.0/		(or		client/api/		in	the	case	of	CloudStack)	instead	of	the		region	.

"Bring	Your	Own	Nodes"	(BYON)	Example

You	can	also	specify	pre-existing	servers	to	use	--	"bring-your-own-nodes".	The	example	below	shows	a	pool	of
machines	that	will	be	used	by	the	entities	within	the	application.

name:	simple-appserver-with-location-byon

location:

		byon:

				user:	brooklyn

				privateKeyFile:	~/.ssh/brooklyn.pem

				hosts:

				-	192.168.0.18

				-	192.168.0.19

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

Single	Line	and	Multi	Line	Locations

A	simple	location	can	be	specified	on	a	single	line.	Alternatively,	it	can	be	split	to	have	one	configuration	option	per
line	(recommended	for	all	but	the	simplest	locations).

For	example,	the	two	examples	below	are	equivalent:

location:	byon(name="my	loc",hosts="1.2.3.4",user="bob",privateKeyFile="~/.ssh/bob_id_rsa")

location:

		byon:

				name:	"my	loc"

				hosts:

				-	"1.2.3.4"

				user:	"bob"

				privateKeyFile:	"~/.ssh/bob_id_rsa"

Setting	Locations

46

https://jclouds.apache.org
https://console.aws.amazon.com/iam/home?#security_credential


Specific	Locations	for	Specific	Entities

One	can	define	specific	locations	on	specific	entities	within	the	blueprint	(instead	of,	or	as	well	as,	defining	the	location
at	the	top-level	of	the	blueprint).

The	example	below	will	deploy	Tomcat	and	JBoss	App	Server	to	different	Bring	Your	Own	Nodes	locations:

name:	simple-appserver-with-location-per-entity

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

		location:

				byon(hosts="192.168.0.18",user="brooklyn",privateKeyFile="~/.ssh/brooklyn.pem")

-	type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

		location:

				byon(hosts="192.168.0.19",user="brooklyn",privateKeyFile="~/.ssh/brooklyn.pem")

The	rules	for	precedence	when	defining	a	location	for	an	entity	are:

The	location	defined	on	that	specific	entity.
If	no	location	is	defined,	then	the	first	ancestor	that	defines	an	explicit	location.
If	still	no	location	is	defined,	then	the	location	defined	at	the	top-level	of	the	blueprint.

This	means,	for	example,	that	if	you	define	an	explicit	location	on	a	cluster	then	it	will	be	used	for	all	members	of	that
cluster.

Multiple	Locations

Some	entities	are	written	to	expect	a	set	of	locations.	For	example,	a		DynamicFabric		will	create	a	member	entity	in
each	location	that	it	is	given.	To	supply	multiple	locations,	simply	use		locations		with	a	yaml	list.

In	the	example	below,	it	will	create	a	cluster	of	app-servers	in	each	location.	One	location	is	used	for	each
	DynamicCluster	;	all	app-servers	inside	that	cluster	will	obtain	a	machine	from	that	given	location.

name:	fabric-of-app-server-clusters

locations:

-	aws-ec2:us-east-1

-	aws-ec2:us-west-1

services:

-	type:	org.apache.brooklyn.entity.group.DynamicFabric

		brooklyn.config:

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.group.DynamicCluster

								brooklyn.config:

										cluster.initial.size:	3

										dynamiccluster.memberspec:

												$brooklyn:entitySpec:

														type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

The	entity	hierarchy	at	runtime	will	have	a		DynamicFabric		with	two	children,	each	of	type		DynamicCluster		(each
running	in	different	locations),	each	of	which	initially	has	three	app-servers.

For	brevity,	this	example	excludes	the	credentials	for	aws-ec2.	These	could	either	be	specificed	in-line	or	defined	as
named	locations	in	the	catalog	(see	below).

Adding	Locations	to	the	Catalog

The	examples	above	have	given	all	the	location	details	within	the	application	blueprint.	It	is	also	possible	(and	indeed
preferred)	to	add	the	location	definitions	to	the	catalog	so	that	they	can	be	referenced	by	name	in	any	blueprint.

Setting	Locations

47



For	more	information	see	the	Operations:	Catalog	section	of	the	User	Guide.

Externalized	Configuration

For	simplicity,	the	examples	above	have	included	the	cloud	credentials.	For	a	production	system,	it	is	strongly
recommended	to	use	Externalized	Configuration	to	retrieve	the	credentials	from	a	secure	credentials	store,	such	as
Vault.

Use	of	provisioning.properties

An	entity	that	represents	a	"software	process"	can	use	the	configuration	option		provisioning.properties		to	augment
the	location's	configuration.	For	more	information,	see	Entity	Configuration	details.

Setting	Locations

48

https://www.vaultproject.io


Another	simple	blueprint	will	just	create	a	VM	which	you	can	use,	without	any	software	installed	upon	it:

name:	simple-vm

services:

-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

		name:	VM

		brooklyn.config:

				provisioning.properties:

						minRam:	8192mb

						minCores:	4

						minDisk:	100gb

We've	omitted	the		location		section	here	and	in	many	of	the	examples	below;	add	the	appropriate	choice	when	you
paste	your	YAML.	Note	that	the		provisioning.properties		will	be	ignored	if	deploying	to		localhost		or		byon		fixed-IP
machines.

This	will	create	a	VM	with	the	specified	parameters	in	your	choice	of	cloud.	In	the	GUI	(and	in	the	REST	API),	the
entity	is	called	"VM",	and	the	hostname	and	IP	address(es)	are	reported	as	sensors.	There	are	many	more
	provisioning.properties		supported	here,	including:

a		user		to	create	(if	not	specified	it	creates	the	same	username	as		brooklyn		is	running	under)
a		password		for	him	or	a		publicKeyFile		and		privateKeyFile		(defaulting	to	keys	in		~/.ssh/id_rsa{.pub,}		and	no
password,	so	if	you	have	keys	set	up	you	can	immediately	ssh	in!)
	machineCreateAttempts		(for	dodgy	clouds,	and	they	nearly	all	fail	occasionally!)
and	things	like		imageId		and		userMetadata		and	disk	and	networking	options	(e.g.		autoAssignFloatingIp		for
private	clouds)

For	more	information,	see	Operations:	Locations.

Configuring	VMs

49



We've	seen	the	configuration	of	machines	and	how	to	build	up	clusters.	Now	let's	return	to	our	app-server	example
and	explore	how	more	interesting	services	can	be	configured,	composed,	and	combined.

Service	Configuration

We'll	begin	by	using	more	key-value	pairs	to	configure	the	JBoss	server	to	run	a	real	app:

name:	appserver-configured

services:

-	type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				http.port:	8080

(As	before,	you'll	need	to	add	the		location		info;		localhost		will	work	for	these	and	subsequent	examples.)

When	this	is	deployed,	you	can	see	management	information	in	the	Brooklyn	Web	Console,	including	a	link	to	the
deployed	application	(downloaded	to	the	target	machine	from	the		hello-world		URL),	running	on	port	8080.

Tip:	If	port	8080	might	be	in	use,	you	can	specify		8080+		to	take	the	first	available	port	>=	8080;	the	actual	port	will	be
reported	as	a	sensor	by	Brooklyn.

Multiple	Services

If	you	explored	the		hello-world-sql		application	we	just	deployed,	you'll	have	noticed	it	tries	to	access	a	database.
And	it	fails,	because	we	have	not	set	one	up.	Let's	do	that	now:

name:	appserver-w-db

services:

-	type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

		name:	AppServer	HelloWorld	

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				http.port:	8080+

				java.sysprops:	

						brooklyn.example.db.url:

								$brooklyn:formatString:

										-	jdbc:%s%s?user=%s\\&password=%s

										-	$brooklyn:component("db").attributeWhenReady("datastore.url")

										-	visitors

										-	brooklyn

										-	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		id:	db

		name:	DB	HelloWorld	Visitors

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://github.com/apache/brooklyn-library/raw/master/examples/simple-web-cl

uster/src/main/resources/visitors-creation-script.sql

Here	there	are	a	few	things	going	on:

We've	added	a	second	service,	which	will	be	the	database;	you'll	note	the	database	has	been	configured	to	run	a
custom	setup	script
We've	injected	the	URL	of	the	second	service	into	the	appserver	as	a	Java	system	property	(so	our	app	knows
where	to	find	the	database)
We've	used	externalized	config	to	keep	secret	information	out	of	the	blueprint;	this	is	loaded	at	runtime	from	an
externalized	config	provider,	such	as	a	remote	credentials	store

Multiple	Services	and	Dependency	Injection

50



Caution:	Be	careful	if	you	write	your	YAML	in	an	editor	which	attempts	to	put	"smart-quotes"	in.	All	quote
characters	must	be	plain	ASCII,	not	fancy	left-double-quotes	and	right-double-quotes!

There	are	as	many	ways	to	do	dependency	injection	as	there	are	developers,	it	sometimes	seems;	our	aim	in
Brooklyn	is	not	to	say	this	has	to	be	done	one	way,	but	to	support	the	various	mechanisms	people	might	need,	for
whatever	reasons.	(We	each	have	our	opinions	about	what	works	well,	of	course;	the	one	thing	we	do	want	to	call	out
is	that	being	able	to	dynamically	update	the	injection	is	useful	in	a	modern	agile	application	--	so	we	are	definitively
not	recommending	this	Java	system	property	approach	...	but	it	is	an	easy	one	to	demo!)

The	way	the	dependency	injection	works	is	again	by	using	the		$brooklyn:		DSL,	this	time	referring	to	the
	component("db")		(looked	up	by	the		id		field	on	our	DB	component),	and	then	to	a	sensor	emitted	by	that	component.
All	the	database	entities	emit	a		database.url		sensor	when	they	are	up	and	running;	the		attributeWhenReady		DSL
method	will	store	a	pointer	to	that	sensor	(a	Java	Future	under	the	covers)	in	the	Java	system	properties	map	which
the	JBoss	entity	reads	at	launch	time,	blocking	if	needed.

This	means	that	the	deployment	occurs	in	parallel,	and	if	the	database	comes	up	first,	there	is	no	blocking;	but	if	the
JBoss	entity	completes	its	installation	and	downloading	the	WAR,	it	will	wait	for	the	database	before	it	launches.	At
that	point	the	URL	is	injected,	first	passing	it	through		formatString		to	include	the	credentials	for	the	database	(which
are	defined	in	the	database	creation	script).

An	Aside:	Substitutability

Don't	like	JBoss?	Is	there	something	about	Maria?	One	of	the	modular	principles	we	follow	in	Brooklyn	is
substitutability:	in	many	cases,	the	config	keys,	sensors,	and	effectors	are	defined	in	superclasses	and	are	portable
across	multiple	implementations.

Here's	an	example	deploying	the	same	application	but	with	different	flavors	of	the	components:

name:	appserver-w-db-other-flavor

services:

-	type:	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer

		name:	AppServer	HelloWorld	

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				http.port:	8080+

				java.sysprops:	

						brooklyn.example.db.url:

								$brooklyn:formatString:

										-	jdbc:%s%s?user=%s\\&password=%s

										-	$brooklyn:component("db").attributeWhenReady("datastore.url")

										-	visitors

										-	brooklyn

										-	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

-	type:	org.apache.brooklyn.entity.database.mariadb.MariaDbNode

		id:	db

		name:	DB	HelloWorld	Visitors

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://github.com/apache/brooklyn-library/raw/master/examples/simple-web-cl

uster/src/main/resources/visitors-creation-script.sql

				provisioning.properties:

						minRam:	8192

By	changing	two	lines	we've	switched	from	JBoss	and	MySQL	to	Tomcat	and	MariaDB.

We've	also	brought	in	the		provisioning.properties		from	the	VM	example	earlier	so	our	database	has	8GB	RAM.	Any
of	those	properties,	including		imageId		and		user	,	can	be	defined	on	a	per-entity	basis.

Multiple	Services	and	Dependency	Injection

51



Multiple	Services	and	Dependency	Injection

52



So	far	we've	covered	how	to	configure	and	compose	entities.	There's	a	large	library	of	blueprints	available,	but	there
are	also	times	when	you'll	want	to	write	your	own.

For	complex	use	cases,	you	can	write	JVM,	but	for	many	common	situations,	some	of	the	highly-configurable
blueprints	make	it	easy	to	write	in	YAML,	including		bash		and	Chef.

Vanilla	Software	using		bash	

The	following	blueprint	shows	how	a	simple	script	can	be	embedded	in	the	YAML	(the		|		character	is	special	YAML
which	makes	it	easier	to	insert	multi-line	text):

name:	Simple	Netcat	Server	Example

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				launch.command:	|

						echo	hello	|	nc	-l	4321	&

						echo	$!	>	$PID_FILE

This	starts	a	simple		nc		listener	on	port	4321	which	will	respond		hello		to	the	first	session	which	connects	to	it.	Test
it	by	running		telnet	localhost	4321		or	opening		http://localhost:4321		in	a	browser.

Note	that	it	only	allows	you	connect	once,	and	after	that	it	fails.	This	is	deliberate!	We'll	repair	this	later	in	this
example.	Until	then	however,	in	the	Applications	view	you	can	click	the	server,	go	to	the		Effectors		tab,	and	click
	restart		to	bring	if	back	to	life.

This	is	just	a	simple	script,	but	it	shows	how	any	script	can	be	easily	embedded	here,	including	a	script	to	download
and	run	other	artifacts.	Many	artifacts	are	already	packaged	such	that	they	can	be	downloaded	and	launched	with	a
simple	script,	and		VanillaSoftwareProcess		can	also	be	used	for	them.

Downloading	Files

We	can	specify	a		download.url		which	downloads	an	artifact	(and	automatically	unpacking	TAR,	TGZ,	and	ZIP
archives)	before	running		launch.command		relative	to	where	that	file	is	installed	(or	unpacked),	with	the	default
	launch.command		being		./start.sh	.

So	if	we	create	a	file		/tmp/netcat-server.tgz		containing	just		start.sh		in	the	root	which	contains	the	line		echo	hello
|	nc	-l	4321	,	we	can	instead	write	our	example	as:

name:	Simple	Netcat	Example	From	File

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				download.url:	file:///tmp/netcat-server.tgz

				launch.command:	|

						./start.sh	&

						echo	$!	>	$PID_FILE

Determining	Successful	Launch

The	default	method	used	to	determine	a	successful	launch	of		VanillaSoftwareProcess		is	to	run	a	command	over	ssh
to	do	a	health	check.	The	health	check	is	done	post-launch	(repeating	until	it	succeeds,	before	then	reporting	that	the
entity	has	started).

Custom	Entities

53



The	default	command	used	to	carry	out	this	health	check	will	determine	if	the	pid,	written	to		$PID_FILE		is	running.
This	is	why	we	included	in	the	entity's	launch	script	the	line		echo	$!	>	$PID_FILE	.

You'll	observe	this	if	you	connect	to	one	of	the	netcat	services	(e.g.	via		telnet	localhost	4321	):	the		nc		process	exits
afterwards,	causing	Brooklyn	to	set	the	entity	to	an		ON_FIRE		state.	(You	can	also	test	this	with	a		killall	nc	).

There	are	other	options	for	determining	health:	you	can	set		checkRunning.command		and		stop.command		instead,	as
documented	on	the	javadoc	and	config	keys	of	the	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess
class,	and	those	scripts	will	be	used	instead	of	checking	and	stopping	the	process	whose	PID	is	in		$PID_FILE	.	For
example:

name:	Netcat	Example	with	Explicit	Check	and	Stop	Commands

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				launch.command:	|

						echo	hello	|	nc	-l	4321	&

						echo	$!	>	$PID_FILE

				#	The	following	overrides	demonstrate	the	use	of	a	custom	shell	environment	as	well	as

				#	check-running	and	stop	commands.	These	are	optional;	default	behavior	will	"do	the

				#	right	thing"	with	the	pid	file	automatically.

				shell.env:

						CHECK_MARKER:	"checkRunning"

						STOP_MARKER:	"stop"

				checkRunning.command:	|

						echo	$CHECK_MARKER	>>	DATE	&&	test	-f	"$PID_FILE"	&&	ps	-p	`cat	$PID_FILE`	>/dev/null

				stop.command:	|

						echo	$STOP_MARKER		>>	DATE	&&	test	-f	"$PID_FILE"	&&	{	kill	-9	`cat	$PID_FILE`;	rm	$PID_FILE;	}

Periodic	Health	Check

After	start-up	is	complete,	the	health	check	described	above	is	also	run	periodically,	defaulting	to	every	5	seconds
(configured	with	the	config	key		softwareProcess.serviceProcessIsRunningPollPeriod	).

This	ssh-based	polling	can	be	turned	off	by	configuring		sshMonitoring.enabled:	false	.	However,	if	no	alternative
health-check	is	defined	then	failure	of	the	process	would	never	be	detected	by	Brooklyn.

See	Health	Check	Sensors	for	alternative	ways	of	detecting	failures.

Port	Inferencing

If	you're	deploying	to	a	cloud	machine,	a	firewall	might	block	the	port	4321.	We	can	tell	Brooklyn	to	open	this	port
explicitly	by	specifying		inboundPorts:	[	4321	]	;	however	a	more	idiomatic	way	is	to	specify	a	config	ending	with
	.port	,	such	as:

name:	Netcat	Example	with	Port	Opened

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				#	matching	the	regex	`.*\.port`	will	cause	the	port	to	be	opened

				#	if	in	a	cloud	where	configurable	security	groups	are	available

				netcat.port:	4321

				launch.command:	|

Custom	Entities

54

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/entity/software/base/VanillaSoftwareProcess.html


						echo	hello	|	nc	-l	4321	&

						echo	$!	>	$PID_FILE

The	regex	for	ports	to	be	opened	can	be	configured	using	the	config		inboundPorts.configRegex		(which	has		.*\.port	
as	the	default	value).

Config	keys	of	type		org.apache.brooklyn.api.location.PortRange		(aka		port	)	have	special	behaviour:	when
configuring,	you	can	use	range	notation		8000-8100		or		8000+		to	tell	Brooklyn	to	find	one	port	matching;	this	is	useful
when	ports	might	be	in	use.	In	addition,	any	such	config	key	will	be	opened,	irrespective	of	whether	it	matches	the
	inboundPorts.configRegex	.	To	prevent	any	inferencing	of	ports	to	open,	you	can	set	the	config
	inboundPorts.autoInfer		to		false	.

Furthermore,	the	port	inferencing	capability	takes	in	account	static		ConfigKey		fields	that	are	defined	on	any	Entity
sub-class.	So,		ConfigKey		fields	that	are	based	on		PortRanges		type	will	be	also	included	as	required	open	ports.

Note	that	in	the	example	above,		netcat.port		must	be	specified	in	a		brooklyn.config		block.	This	block	can	be	used
to	hold	any	config	(including	for	example	the		launch.command	),	but	for	convenience	Brooklyn	allows	config	keys
declared	on	the	underlying	type	to	be	specified	up	one	level,	alongside	the	type.	However	config	keys	which	are	not
declared	on	the	type	must	be	declared	in	the		brooklyn.config		block.

Passing	custom	variables

Blueprint	scripts	can	be	parametrised	through	environment	variables,	making	them	reusable	in	different	use-cases.
Define	the	variables	in	the		env		block	and	then	reference	them	using	the	standard	bash	notation:

name:	Netcat	Example	with	Environment	Vars

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				launch.command:	|

						echo	$MESSAGE	|	nc	-l	$NETCAT_PORT	&

						echo	$!	>	$PID_FILE

				shell.env:

						MESSAGE:	hello

						NETCAT_PORT:	4321

Non-string	objects	in	the		env		map	will	be	serialized	to	JSON	before	passing	them	to	the	script.

Declaring	New	Config	Keys

We	can	define	config	keys	to	be	presented	to	the	user	using	the		brooklyn.parameters		block:

name:	Netcat	Example	with	Parameter

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		name:	Simple	Netcat	Server

		brooklyn.config:

				launch.command:	|

						echo	$MESSAGE	|	nc	-l	$NETCAT_PORT	&

						echo	$!	>	$PID_FILE

				shell.env:

						MESSAGE:	$brooklyn:config("message")

						NETCAT_PORT:	$brooklyn:attributeWhenReady("netcat.port")

Custom	Entities

55



		brooklyn.parameters:

		-	name:	message

				description:	a	message	to	send	to	the	caller

				default:	hello

		-	name:	netcat.port

				type:	port

				description:	the	port	netcat	should	run	on

				default:	4321+

The	example	above	will	allow	a	user	to	specify	a	message	to	send	back	and	the	port	where	netcat	will	listen.	The
metadata	on	these	parameters	is	available	at	runtime	in	the	UI	and	through	the	API,	and	is	used	when	populating	a
catalog.

The	example	also	shows	how	these	values	can	be	passed	as	environment	variables	to	the	launch	command.	The
	$brooklyn:config(...)		function	returns	the	config	value	supplied	or	default.	For	the	type		port	,	an	attribute	sensor	is
also	created	to	report	the	actual	port	used	after	port	inference,	and	so	the		$brooklyn:attributeWhenReady(...)		function
is	used.	(If		$brooklyn:config("netcat.port")		had	been	used,		4321+		would	be	passed	as		NETCAT_PORT	.)

This	gives	us	quite	a	bit	more	power	in	writing	our	blueprint:

Multiple	instances	of	the	server	can	be	launched	simultaneously	on	the	same	host,	as	the		4321+		syntax	enables
Brooklyn	to	assign	them	different	ports
If	this	type	is	added	to	the	catalog,	a	user	can	configure	the	message	and	the	port;	we'll	show	this	in	the	next
section

Using	the	Catalog	and	Clustering

The	Catalog	tab	allows	you	to	add	blueprints	which	you	can	refer	to	in	other	blueprints.	In	that	tab,	click	+	then	YAML,
and	enter	the	following:

brooklyn.catalog:

		id:	netcat-example

		version:	"1.0"

		itemType:	entity

		item:

				type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

				name:	Simple	Netcat	Server

				brooklyn.config:

						launch.command:	|

								echo	$MESSAGE	|	nc	-l	$NETCAT_PORT	&

								echo	$!	>	$PID_FILE

						shell.env:

								MESSAGE:	$brooklyn:config("message")

								NETCAT_PORT:	$brooklyn:attributeWhenReady("netcat.port")

				brooklyn.parameters:

				-	name:	message

						description:	a	message	to	send	to	the	caller

						default:	hello

				-	name:	netcat.port

						type:	port

						description:	the	port	netcat	should	run	on

						default:	4321+

				brooklyn.enrichers:

				-	type:	org.apache.brooklyn.enricher.stock.Transformer

						brooklyn.config:

								uniqueTag:	main-uri-generator

								enricher.sourceSensor:	$brooklyn:sensor("host.address")

								enricher.targetSensor:	$brooklyn:sensor("main.uri")

								enricher.targetValue:

Custom	Entities

56



										$brooklyn:formatString:

										-	"http://%s:%s/"

										-	$brooklyn:attributeWhenReady("host.address")

										-	$brooklyn:attributeWhenReady("netcat.port")

This	is	the	same	example	as	in	the	previous	section,	wrapped	according	to	the	catalog	YAML	requirements,	with	one
new	block	added	defining	an	enricher.	An	enricher	creates	a	new	sensor	from	other	values;	in	this	case	it	will	create	a
	main.uri		sensor	by	populating	a		printf	-style	string		"http://%s:%s"		with	the	sensor	values.

With	this	added	to	the	catalog,	we	can	reference	the	type		netcat-example		when	we	deploy	an	application.	Return	to
the	Home	or	Applications	tab,	click	+,	and	submit	this	YAML	blueprint:

name:	Netcat	Type	Reference	Example

location:	localhost

services:

-	type:	netcat-example

		message:	hello	from	netcat	using	a	registered	type

This	extends	the	previous	blueprint	which	we	registered	in	the	catalog,	meaning	that	we	don't	need	to	include	it	each
time.	Here,	we've	elected	to	supply	our	own	message,	but	we'll	use	the	default	port.	More	importantly,	we	can
package	it	for	others	to	consume	--	or	take	items	others	have	built.

We	can	go	further	and	use	this	to	deploy	a	cluster,	this	time	giving	a	custom	port	as	well	as	a	custom	message:

name:	Netcat	Cluster	Example

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	netcat-example

								message:	hello	from	cluster	member

								netcat.port:	8000+

				cluster.initial.size:	3

				dynamiccluster.restartMode:	parallel

In	either	of	the	above	examples,	if	you	explore	the	tree	in	the	Applications	view	and	look	at	the	Summary	tab	of	any	of
the	server	instances,	you'll	now	see	the	URL	where	netcat	is	running.	But	remember,	netcat	will	stop	after	one	run,	so
you'll	only	be	able	to	use	each	link	once	before	you	have	to	restart	it.	You	can	also	run		restart		on	the	cluster,	and	if
you	haven't	yet	experimented	with		resize		on	the	cluster	you	might	want	to	do	that.

Attaching	Policies

Besides	detecting	this	failure,	Brooklyn	policies	can	be	added	to	the	YAML	to	take	appropriate	action.	A	simple
recovery	here	might	just	to	automatically	restart	the	process:

name:	Netcat	Example	with	Restarter	Policy

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		id:	netcat-server

		name:	Simple	Netcat	Server

		brooklyn.config:

				launch.command:	|

						echo	hello	|	nc	-l	4321	&

						echo	$!	>	$PID_FILE

		brooklyn.enrichers:

		-	type:	org.apache.brooklyn.policy.ha.ServiceFailureDetector

				brooklyn.config:

Custom	Entities

57



						#	wait	15s	after	service	fails	before	propagating	failure

						serviceFailedStabilizationDelay:	15s

		brooklyn.policies:

		-	type:	org.apache.brooklyn.policy.ha.ServiceRestarter

				brooklyn.config:

						#	repeated	failures	in	a	time	window	can	cause	the	restarter	to	abort,

						#	propagating	the	failure;	a	time	window	of	0	will	mean	it	always	restarts!

						failOnRecurringFailuresInThisDuration:	0

Autonomic	management	in	Brooklyn	often	follows	the	principle	that	complex	behaviours	emerge	from	composing
simple	policies.	The	blueprint	above	uses	one	policy	to	triggering	a	failure	sensor	when	the	service	is	down,	and
another	responds	to	such	failures	by	restarting	the	service.	This	makes	it	easy	to	configure	various	aspects,	such	as
to	delay	to	see	if	the	service	itself	recovers	(which	here	we've	set	to	15	seconds)	or	to	bail	out	on	multiple	failures
within	a	time	window	(which	again	we	are	not	doing).	Running	with	this	blueprint,	you'll	see	that	the	service	shows	as
on	fire	for	15s	after	a		telnet	localhost	4321	,	before	the	policy	restarts	it.

Sensors	and	Effectors

Effectors

For	an	even	more	interesting	way	to	test	it,	look	at	the	blueprint	defining	a	netcat	server	and	client.	This	uses
	brooklyn.initializers		to	define	an	effector	to		sayHiNetcat		on	the		Simple	Pinger		client,	using		env		variables	to
inject	the		netcat-server		location	and		parameters		to	pass	in	per-effector	data:

		env:

				TARGET_HOSTNAME:	$brooklyn:entity("netcat-server").attributeWhenReady("host.name")

		brooklyn.initializers:

		-	type:	org.apache.brooklyn.core.effector.ssh.SshCommandEffector

				brooklyn.config:

						name:	sayHiNetcat

						description:	Echo	a	small	hello	string	to	the	netcat	entity

						command:	|

								echo	$message	|	nc	$TARGET_HOSTNAME	4321

						parameters:

								message:

										description:	The	string	to	pass	to	netcat

										defaultValue:	hi	netcat

Sensors

This	blueprint	also	uses	initializers	to	define	sensors	on	the		netcat-server		entity	so	that	the		$message		we	passed
above	gets	logged	and	reported	back:

		launch.command:	|

				echo	hello	|	nc	-l	4321	>>	server-input	&

				echo	$!	>	$PID_FILE

		brooklyn.initializers:

		-	type:	org.apache.brooklyn.core.sensor.ssh.SshCommandSensor

				brooklyn.config:

						name:	output.last

						period:	1s

						command:	tail	-1	server-input

Windows	Command	Sensor

Like	the	blueprint	above,	the	following	example	also	uses		brooklyn.initializers		to	define	sensors	on	the	entity,	this
time	however	it	is	a	windows	VM	and	uses		WinRmCommandSensor	.

Custom	Entities

58



-	type:	org.apache.brooklyn.entity.software.base.VanillaWindowsProcess

		brooklyn.config:

				launch.command:	echo	launching

				checkRunning.command:	echo	running

		brooklyn.initializers:

		-	type:	org.apache.brooklyn.core.sensor.windows.WinRmCommandSensor

				brooklyn.config:

						name:	ip.config

						period:	60s

						command:	hostname

Health	Check	Sensors

As	mentioned	previously,	the	default	health	check	is	to	execute	the	check-running	command	over	ssh	every	5
seconds.	This	can	be	very	CPU	intensive	when	there	are	many	entities.	An	alternative	is	to	disable	the	ssh-polling	(by
setting		sshMonitoring.enabled:	false	)	and	to	configure	a	different	health-check.

See	documentation	on	the	Entity's	error	status	for	how	Brooklyn	models	an	entity's	health.

In	the	snippet	below,	we'll	define	a	new	health-check	sensor	(via	http	polling),	and	will	automatically	add	this	to	the
	service.notUp.indicators	.	If	that	map	is	non-empty,	then	the	entity's		service.isUp		will	be	set	automatically	to
	false	:

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaSoftwareProcess

		brooklyn.config:

				launch.command:	|

						...

				checkRunning.command:	true

				sshMonitoring.enabled:	false

		brooklyn.initializers:

				-	type:	org.apache.brooklyn.core.sensor.http.HttpRequestSensor

						brooklyn.config:

								name:	http.healthy

								period:	5s

								suppressDuplicates:	true

								jsonPath:	"$"

								uri:

										$brooklyn:formatString:

										-	"http://%s:8080/healthy"

										-	$brooklyn:attributeWhenReady("host.name")

		brooklyn.enrichers:

				-	type:	org.apache.brooklyn.enricher.stock.UpdatingMap

						brooklyn.config:

								enricher.sourceSensor:	$brooklyn:sensor("http.healthy")

								enricher.targetSensor:	$brooklyn:sensor("service.notUp.indicators")

								enricher.updatingMap.computing:

										$brooklyn:object:

												type:	"com.google.guava:com.google.common.base.Functions"

												factoryMethod.name:	"forMap"

												factoryMethod.args:

														-	true:	null

																false:	"false"

														-	"no	value"

The		HttpRequestSensor		configures	the	entity	to	poll	every	5	seconds	on	the	given	URI,	taking	the	json	result	as	the
sensor	value.

The		UpdatingMap		enricher	uses	that	sensor	to	populate	an	entry	in	the		service.notUp.indicators	.	It	transforms	the
	http.healthy		sensor	value	using	the	given	function:	if	the	http	poll	returned		true	,	then	it	is	mapped	to		null		(so	is
removed	from	the		service.noUp.indicators	);	if	the	poll	returned		false	,	then		"false"		is	added	to	the	indicators

Custom	Entities

59



map;	otherwise		"no	value"		is	added	to	the	indicators	map.

Summary

These	examples	do	relatively	simple	things,	but	they	illustrate	many	of	the	building	blocks	used	in	real-world
blueprints,	and	how	they	can	often	be	easily	described	and	combined	in	Brooklyn	YAML	blueprints.

Custom	Entities

60



Apache	Brooklyn	provides	a	catalog,	which	is	a	persisted	collection	of	versioned	blueprints	and	other	resources.	A
set	of	blueprints	is	loaded	from	the		default.catalog.bom		in	the	Brooklyn	folder	by	default	and	additional	ones	can	be
added	through	the	web	console	or	CLI.	Blueprints	in	the	catalog	can	be	deployed	directly,	via	the	Brooklyn	CLI	or	the
web	console,	or	referenced	in	other	blueprints	using	their		id	.

Catalog

61



What	if	you	want	multiple	machines?

One	way	is	just	to	repeat	the		-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess		block,	but
there's	another	way	which	will	keep	your	powder	DRY:

name:	cluster-vm

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				cluster.initial.size:	5

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

								name:	VM

								provisioning.properties:

										minRam:	8g

										minCores:	4

										minDisk:	100g

Here	we've	composed	the	previous	blueprint	introducing	some	new	important	concepts,	the		DynamicCluster		the
	$brooklyn		DSL,	and	the	"entity-spec".	Let's	unpack	these.

The		DynamicCluster		creates	a	set	of	homogeneous	instances.	At	design-time,	you	specify	an	initial	size	and	the
specification	for	the	entity	it	should	create.	At	runtime	you	can	restart	and	stop	these	instances	as	a	group	(on	the
	DynamicCluster	)	or	refer	to	them	individually.	You	can	resize	the	cluster,	attach	enrichers	which	aggregate	sensors
across	the	cluster,	and	attach	policies	which,	for	example,	replace	failed	members	or	resize	the	cluster	dynamically.

The	specification	is	defined	in	the		dynamiccluster.memberspec		key.	As	you	can	see	it	looks	very	much	like	the	previous
blueprint,	with	one	extra	line.	Entries	in	the	blueprint	which	start	with		$brooklyn:		refer	to	the	Brooklyn	DSL	and	allow
a	small	amount	of	logic	to	be	embedded	(if	there's	a	lot	of	logic,	it's	recommended	to	write	a	blueprint	YAML	plugin	or
write	the	blueprint	itself	as	a	plugin,	in	Java	or	a	JVM-supported	language).

In	this	case	we	want	to	indicate	that	the	parameter	to		dynamiccluster.memberspec		is	an	entity	specification
(	EntitySpec		in	the	underlying	type	system);	the		entitySpec		DSL	command	will	do	this	for	us.	The	example	above
thus	gives	us	5	VMs	identical	to	the	one	we	created	in	the	previous	section.

Clusters,	Specs,	and	Composition

62

http://en.wikipedia.org/wiki/Don't_repeat_yourself


Enrichers	provide	advanced	manipulation	of	an	entity's	sensor	values.	See	below	for	documentation	of	the	stock
enrichers	available	in	Apache	Brooklyn.

Transformer
	org.apache.brooklyn.enricher.stock.Transformer	

Takes	a	source	sensor	and	modifies	it	in	some	way	before	publishing	the	result	in	a	new	sensor.	See	below	an
example	using		$brooklyn:formatString	.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.Transformer

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("urls.tcp.string")

				enricher.targetSensor:	$brooklyn:sensor("urls.tcp.withBrackets")

				enricher.targetValue:	$brooklyn:formatString("[%s]",	$brooklyn:attributeWhenReady("urls.tcp.string"))

Propagator
	org.apache.brooklyn.enricher.stock.Propagator	

Use	propagator	to	duplicate	one	sensor	as	another,	giving	the	supplied	sensor	mapping.	The	other	use	of	Propagator
is	where	you	specify	a	producer	(using		$brooklyn:entity(...)		as	below)	from	which	to	take	sensors;	in	that	mode
you	can	specify		propagate		as	a	list	of	sensors	whose	names	are	unchanged,	instead	of	(or	in	addition	to)	this	map.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.Propagator

		brooklyn.config:

				enricher.producer:	$brooklyn:entity("cluster")

-	type:	org.apache.brooklyn.enricher.stock.Propagator

		brooklyn.config:

				sensorMapping:

						$brooklyn:sensor("url"):	$brooklyn:sensor("org.apache.brooklyn.core.entity.Attributes",	"main.uri")

Custom	Aggregating
	org.apache.brooklyn.enricher.stock.Aggregator	

Aggregates	multiple	sensor	values	(usually	across	a	tier,	esp.	a	cluster)	and	performs	a	supplied	aggregation	method
to	them	to	return	an	aggregate	figure,	e.g.	sum,	mean,	median,	etc.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.Aggregator

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("webapp.reqs.perSec.windowed")

				enricher.targetSensor:	$brooklyn:sensor("webapp.reqs.perSec.perNode")

				enricher.aggregating.fromMembers:	true

				transformation:	average

There	are	a	number	of	additional	configuration	keys	available	for	the	Aggregators:

Configuration	Key Default Description

enricher.transformation.untyped list

Specifies	a	transformation,	as	a	function	from	a	collection	to
the	value,	or	as	a	string	matching	a	pre-defined	named
transformation,	such	as	'average'	(for	numbers),	'sum'	(for
numbers),	'isQuorate'	(to	compute	a	quorum),	'first'	(the	first
value,	or	null	if	empty),	or	'list'	(the	default,	putting	any
collection	of	items	into	a	list)

Enrichers

63

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/Transformer.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/Propagator.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/Aggregator.html


quorum.check.type
The	requirement	to	be	considered	quorate	--	possible	values:
'all',	'allAndAtLeastOne',	'atLeastOne',
'atLeastOneUnlessEmpty',	'alwaysHealthy'",
"allAndAtLeastOne"

quorum.total.size 1 The	total	size	to	consider	when	determining	if	quorate

Joiner
	org.apache.brooklyn.enricher.stock.Joiner	

Joins	a	sensor	whose	output	is	a	list	into	a	single	item	joined	by	a	separator.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.Joiner

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("urls.tcp.list")

				enricher.targetSensor:	$brooklyn:sensor("urls.tcp.string")

				uniqueTag:	urls.quoted.string

There	are	a	number	of	additional	configuration	keys	available	for	the	joiner:

Configuration	Key Default Description

enricher.joiner.separator , Separator	string	to	insert	between	each	argument

enricher.joiner.keyValueSeparator = Separator	string	to	insert	between	each	key-value	pair

enricher.joiner.joinMapEntries false Whether	to	add	map	entries	as	key-value	pairs	or	just	use
the	value

enricher.joiner.quote true Whether	to	bash-escape	each	parameter	and	wrap	in
double-quotes

enricher.joiner.minimum 0 Minimum	number	of	elements	to	join;	if	fewer	than	this,	sets
null

enricher.joiner.maximum null Maximum	number	of	elements	to	join	(null	means	all
elements	taken)

Delta	Enricher
	org.apache.brooklyn.policy.enricher.DeltaEnricher	

Converts	an	absolute	sensor	into	a	delta	sensor	(i.e.	the	difference	between	the	current	and	previous	value)

Time-weighted	Delta
	org.apache.brooklyn.enricher.stock.YamlTimeWeightedDeltaEnricher	

Converts	absolute	sensor	values	into	a	difference	over	time.	The		enricher.delta.period		indicates	the	measurement
interval.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.YamlTimeWeightedDeltaEnricher

		brooklyn.config:

				enricher.sourceSensor:	reqs.count

				enricher.targetSensor:	reqs.per_sec

				enricher.delta.period:	1s

Rolling	Mean

Enrichers

64

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/Joiner.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/policy/enricher/DeltaEnricher.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/YamlTimeWeightedDeltaEnricher.html


	org.apache.brooklyn.policy.enricher.RollingMeanEnricher	

Transforms	a	sensor	into	a	rolling	average	based	on	a	fixed	window	size.	This	is	useful	for	smoothing	sample	type
metrics,	such	as	latency	or	CPU	time

Rolling	Time-window	Mean
	org.apache.brooklyn.policy.enricher.RollingTimeWindowMeanEnricher	

Transforms	a	sensor's	data	into	a	rolling	average	based	on	a	time	window.	This	time	window	can	be	specified	with	the
config	key		confidenceRequired		-	Minimum	confidence	level	(ie	period	covered)	required	to	publish	a	rolling	average
(default		8d	).

Http	Latency	Detector
	org.apache.brooklyn.policy.enricher.RollingTimeWindowMeanEnricher.HttpLatencyDetector	

An	Enricher	which	computes	latency	in	accessing	a	URL,	normally	by	periodically	polling	that	URL.	This	is	then
published	in	the	sensors		web.request.latency.last		and		web.request.latency.windowed	.

There	are	a	number	of	additional	configuration	keys	available	for	the	Http	Latency	Detector:

Configuration	Key Default Description

latencyDetector.url The	URL	to	compute	the	latency	of

latencyDetector.urlSensor A	sensor	containing	the	URL	to	compute	the	latency	of

latencyDetector.urlPostProcessing Function	applied	to	the	urlSensor	value,	to	determine	the
URL	to	use

latencyDetector.rollup The	window	size	(in	duration)	over	which	to	compute

latencyDetector.requireServiceUp false Require	the	service	is	up

latencyDetector.period 1s The	period	of	polling

Combiner
	org.apache.brooklyn.enricher.stock.Combiner	

Can	be	used	to	combine	the	values	of	sensors.	This	enricher	should	be	instantiated	using
	Enrichers.builder().combining(..)	.	This	enricher	is	only	available	in	Java	blueprints	and	cannot	be	used	in	YAML.

Note	On	Enricher	Producers

If	an	entity	needs	an	enricher	whose	source	sensor	(	enricher.sourceSensor	)	belongs	to	another	entity,	then	the
enricher	configuration	must	include	an		enricher.producer		key	referring	to	the	other	entity.

For	example,	if	we	consider	the	Transfomer	from	above,	suppose	that		enricher.sourceSensor:
$brooklyn:sensor("urls.tcp.list")		is	actually	a	sensor	on	a	different	entity	called		load.balancer	.	In	this	case,	we
would	need	to	supply	an		enricher.producer		value.

brooklyn.enrichers:

-	type:	org.apache.brooklyn.enricher.stock.Transformer

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("urls.tcp.string")

				enricher.targetSensor:	$brooklyn:sensor("urls.tcp.withBrackets")

				enricher.targetValue:	$brooklyn:formatString("[%s]",	$brooklyn:attributeWhenReady("urls.tcp.string"))

Enrichers

65

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/policy/enricher/RollingMeanEnricher.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/policy/enricher/RollingTimeWindowMeanEnricher.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/policy/enricher/HttpLatencyDetector.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/enricher/stock/Combiner.html


It	is	important	to	note	that	the	value	supplied	to		enricher.producer		must	be	immediately	resolvable.	While	it	would	be
valid	DSL	syntax	to	write:

enricher.producer:	brooklyn:entity($brooklyn:attributeWhenReady("load.balancer.entity"))

(assuming	the		load.balancer.entity		sensor	returns	a	Brooklyn	entity),	this	will	not	function	properly	because
	enricher.producer		will	unsuccessfully	attempt	to	get	the	supplied	entity	immediately.

Enrichers

66



Policies	perform	the	active	management	enabled	by	Brooklyn.	They	can	subscribe	to	entity	sensors	and	be	triggered
by	them	(or	they	can	run	periodically,	or	be	triggered	by	external	systems).

Policies	can	add	subscriptions	to	sensors	on	any	entity.	Normally	a	policy	will	subscribe	to	sensors	on	either	its
associated	entity,	that	entity's	children	and/or	to	the	members	of	a	"group"	entity.

Common	uses	of	a	policy	include	the	following:

perform	calculations,
look	up	other	values,
invoke	effectors	(management	policies)	or,
cause	the	entity	associated	with	the	policy	to	emit	sensor	values	(enricher	policies).

Entities	can	have	zero	or	more		Policy		instances	attached	to	them.

Off-the-Shelf	Policies
Policies	are	highly	reusable	as	their	inputs,	thresholds	and	targets	are	customizable.	Config	key	details	for	each	policy
can	be	found	in	the	Catalog	in	the	Brooklyn	UI.

HA/DR	and	Scaling	Policies

AutoScaler	Policy

org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy

Increases	or	decreases	the	size	of	a	Resizable	entity	based	on	an	aggregate	sensor	value,	the	current	size	of	the
entity,	and	customized	high/low	watermarks.

An	AutoScaler	policy	can	take	any	sensor	as	a	metric,	have	its	watermarks	tuned	live,	and	target	any	resizable	entity	-
be	it	an	application	server	managing	how	many	instances	it	handles,	or	a	tier	managing	global	capacity.

e.g.	if	the	average	request	per	second	across	a	cluster	of	Tomcat	servers	goes	over	the	high	watermark,	it	will	resize
the	cluster	to	bring	the	average	back	to	within	the	watermarks.

brooklyn.policies:

-	type:	org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy

		brooklyn.config:

				metric:	webapp.reqs.perSec.perNode

				metricUpperBound:	3

				metricLowerBound:	1

				resizeUpStabilizationDelay:	2s

				resizeDownStabilizationDelay:	1m

				maxPoolSize:	3

ServiceRestarter	Policy

org.apache.brooklyn.policy.ha.ServiceRestarter

Attaches	to	a	SoftwareProcess	or	to	anything	Startable	which	emits		ha.entityFailed		on	failure	(or	other	configurable
sensor),	and	invokes		restart		on	that	failure.	If	there	is	a	subsequent	failure	within	a	configurable	time	interval	or	if
the	restart	fails,	this	gives	up	and	emits		ha.entityFailed.restart		for	other	policies	to	act	upon	or	for	manual
intervention.

brooklyn.policies:

-	type:	org.apache.brooklyn.policy.ha.ServiceRestarter

		brooklyn.config:

Policies

67



				failOnRecurringFailuresInThisDuration:	5m

Typically	this	is	used	in	conjunction	with	the	FailureDetector	enricher	to	emit	the	trigger	sensor.	The	introduction	to
policies	shows	a	worked	example	of	these	working	together.

ServiceReplacer	Policy

org.apache.brooklyn.policy.ha.ServiceReplacer

The	ServiceReplacer	attaches	to	a	DynamicCluster	and	replaces	a	failed	member	in	response	to		ha.entityFailed		(or
other	configurable	sensor).
The	introduction	to	policies	shows	a	worked	example	of	this	policy	in	use.

SshMachineFailureDetector	Policy

org.apache.brooklyn.policy.ha.SshMachineFailureDetector

The	SshMachineFailureDetector	is	an	HA	policy	for	monitoring	an	SshMachine,	emitting	an	event	if	the	connection	is
lost/restored.

ConnectionFailureDetector	Policy

org.apache.brooklyn.policy.ha.ConnectionFailureDetector

The	ConnectionFailureDetector	is	an	HA	policy	for	monitoring	an	http	connection,	emitting	an	event	if	the	connection
is	lost/restored.

Optimization	Policies

PeriodicEffector	Policy

org.apache.brooklyn.policy.action.PeriodicEffectorPolicy

The		PeriodicEffectorPolicy		calls	an	effector	with	a	set	of	arguments	at	a	specified	time	and	date.	The	policy
monitors	the	sensor	configured	by		start.sensor		and	will	only	start	when	this	is	set	to		true	.	The	default	sensor
checked	is		service.isUp	,	so	that	the	policy	will	not	execute	the	effector	until	the	entity	is	started.	The	following
example	calls	a		resize		effector	to	resize	a	cluster	up	to	10	members	at	8am	and	then	down	to	1	member	at	6pm.

-	type:	org.apache.brooklyn.policy.action.PeriodicEffectorPolicy

		brooklyn.config:

				effector:	resize

				args:

						desiredSize:	10

				period:	1	day

				time:	08:00:00

-	type:	org.apache.brooklyn.policy.action.PeriodicEffectorPolicy

		brooklyn.config:

				effector:	resize

				args:

						desiredSize:	1

				period:	1	day

				time:	18:00:00

ScheduledEffector	Policy

org.apache.brooklyn.policy.action.ScheduledEffectorPolicy

Policies

68



The		ScheduledEffectorPolicy		calls	an	effector	at	a	specific	time.	The	policy	monitors	the	sensor	configured	by
	start.sensor		and	will	only	execute	the	effector	at	the	specified	time	if	this	is	set	to		true	.

There	are	two	modes	of	operation,	one	based	solely	on	policy	configuration	where	the	effector	will	execute	at	the	time
set	using	the		time		key	or	after	the	duration	set	using	the		wait		key,	or	by	monitoring	sensors.	The	policy	monitors
the		scheduler.invoke.now		sensor	and	will	execute	the	effector	immediately	when	its	value	changes	to		true	.	When
the		scheduler.invoke.at		sensor	changes,	it	will	set	a	time	in	the	future	when	the	effector	should	be	executed.

The	following	example	calls	a		backup		effector	every	night	at	midnight.

-	type:	org.apache.brooklyn.policy.action.ScheduledEffectorPolicy

		brooklyn.config:

				effector:	backup

				time:	00:00:00

FollowTheSun	Policy

org.apache.brooklyn.policy.followthesun.FollowTheSunPolicy

The	FollowTheSunPolicy	is	for	moving	work	around	to	follow	the	demand.	The	work	can	be	any	Movable	entity.	This
currently	available	in	yaml	blueprints.

LoadBalancing	Policy

org.apache.brooklyn.policy.loadbalancing.LoadBalancingPolicy

The	LoadBalancingPolicy	is	attached	to	a	pool	of	"containers",	each	of	which	can	host	one	or	more	migratable	"items".
The	policy	monitors	the	workrates	of	the	items	and	effects	migrations	in	an	attempt	to	ensure	that	the	containers	are
all	sufficiently	utilized	without	any	of	them	being	overloaded.

Lifecycle	and	User	Management	Policies

StopAfterDuration	Policy

org.apache.brooklyn.policy.action.StopAfterDurationPolicy

The	StopAfterDurationPolicy	can	be	used	to	limit	the	lifetime	of	an	entity.	After	a	configure	time	period	expires	the
entity	will	be	stopped.

ConditionalSuspend	Policy

org.apache.brooklyn.policy.ha.ConditionalSuspendPolicy

The	ConditionalSuspendPolicy	will	suspend	and	resume	a	target	policy	based	on	configured	suspend	and	resume
sensors.

CreateUser	Policy

org.apache.brooklyn.policy.jclouds.os.CreateUserPolicy

The	CreateUserPolicy	Attaches	to	an	Entity	and	monitors	for	the	addition	of	a	location	to	that	entity,	the	policy	then
adds	a	new	user	to	the	VM	with	a	randomly	generated	password,	with	the	SSH	connection	details	set	on	the	entity	as
the	createuser.vm.user.credentials	sensor.

AdvertiseWinRMLogin	Policy

Policies

69



org.apache.brooklyn.location.winrm.WinRmMachineLocation

This	is	similar	to	the	CreateUserPolicy.	It	will	monitor	the	addition	of	WinRmMachineLocation	to	an	entity	and	then
create	a	sensor	advertising	the	administrative	user's	credentials.

Writing	a	Policy

Your	First	Policy

Policies	perform	the	active	management	enabled	by	Brooklyn.	Each	policy	instance	is	associated	with	an	entity,	and
at	runtime	it	will	typically	subscribe	to	sensors	on	that	entity	or	children,	performing	some	computation	and	optionally
actions	when	a	subscribed	sensor	event	occurs.	This	action	might	be	invoking	an	effector	or	emitting	a	new	sensor,
depending	the	desired	behavior	is.

Writing	a	policy	is	straightforward.	Simply	extend		AbstractPolicy	,	overriding	the		setEntity		method	to	supply	any
subscriptions	desired:

				@Override

				public	void	setEntity(EntityLocal	entity)	{

								super.setEntity(entity)

								subscribe(entity,	TARGET_SENSOR,	this)

				}

and	supply	the	computation	and/or	activity	desired	whenever	that	event	occurs:

				@Override

				public	void	onEvent(SensorEvent<Integer>	event)	{

								int	val	=	event.getValue()

								if	(val	%	2	==	1)

												entity.sayYoureOdd();

				}

You'll	want	to	do	more	complicated	things,	no	doubt,	like	access	other	entities,	perform	multiple	subscriptions,	and
emit	other	sensors	--	and	you	can.	See	the	best	practices	below	and	source	code	for	some	commonly	used	policies
and	enrichers,	such	as		AutoScalerPolicy		and		RollingMeanEnricher	.

One	rule	of	thumb,	to	close	on:	try	to	keep	policies	simple,	and	compose	them	together	at	runtime;	for	instance,	if	a
complex	computation	triggers	an	action,	define	one	enricher	policy	to	aggregate	other	sensors	and	emit	a	new
sensor,	then	write	a	second	policy	to	perform	that	action.

Best	Practice

The	following	recommendations	should	be	considered	when	designing	policies:

Management	should	take	place	as	"low"	as	possible	in	the	hierarchy

place	management	responsibility	in	policies	at	the	entity,	as	much	as	possible	ideally	management	should	take
run	as	a	policy	on	the	relevant	entity

place	escalated	management	responsibility	at	the	parent	entity.	Where	this	is	impractical,	perhaps	because	two
aspects	of	an	entity	are	best	handled	in	two	different	places,	ensure	that	the	separation	of	responsibilities	is
documented	and	there	is	a	group	membership	relationship	between	secondary/aspect	managers.

Policies	should	be	small	and	composable

Policies

70

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/policy/AbstractPolicy.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/objs/AbstractEntityAdjunct.html#setEntity-org.apache.brooklyn.api.entity.EntityLocal-


e.g.	one	policy	which	takes	a	sensor	and	emits	a	different,	enriched	sensor,	and	a	second	policy	which	responds	to
the	enriched	sensor	of	the	first	(e.g.	a	policy	detects	a	process	is	maxed	out	and	emits	a	TOO_HOT	sensor;	a	second
policy	responds	to	this	by	scaling	up	the	VM	where	it	is	running,	requesting	more	CPU)

Where	a	policy	cannot	resolve	a	situation	at	an	entity,	the	issue	should	be
escalated	to	a	manager	with	a	compatible	policy.

Typically	escalation	will	go	to	the	entity	parent,	and	then	cascade	up.	e.g.	if	the	earlier	VM	CPU	cannot	be	increased,
the	TOO_HOT	event	may	go	to	the	parent,	a	cluster	entity,	which	attempts	to	balance.	If	the	cluster	cannot	balance,
then	to	another	policy	which	attempts	to	scale	out	the	cluster,	and	should	the	cluster	be	unable	to	scale,	to	a	third
policy	which	emits	TOO_HOT	for	the	cluster.

Management	escalation	should	be	carefully	designed	so	that	policies	are	not
incompatible

Order	policies	carefully,	and	mark	sensors	as	"handled"	(or	potentially	"swallow"	them	locally),	so	that	subsequent
policies	and	parent	entities	do	not	take	superfluous	(or	contradictory)	corrective	action.

Implementation	Classes

Extend		AbstractPolicy	,	or	override	an	existing	policy.

Policies

71

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/policy/AbstractPolicy.html


Effectors	perform	an	operation	of	some	kind,	carried	out	by	a	Brooklyn	Entity.	They	can	be	manually	invoked	or
triggered	by	a	Policy.

Common	uses	of	an	effector	include	the	following:

Perform	a	command	on	a	remote	machine.
Collect	data	and	publish	them	to	sensors.

Entities	have	default	effectors,	the	lifecycle	management	effectors	like		start	,		stop	,		restart	,	and	clearly	more
	Effectors		can	be	attached	to	them.

Off-the-Shelf	Effectors
Effectors	are	highly	reusable	as	their	inputs,	thresholds	and	targets	are	customizable.

SSHCommandEffector

An		Effector		to	invoke	a	command	on	a	node	accessible	via	SSH.

It	enables	execution	of	a		command		in	a	specific		execution	director		(executionDir)	by	using	a	custom		shell
environment		(shellEnv).	By	default,	the	specified	command	will	be	executed	on	the	entity	where	the	effector	is
attached	or	on	all	children	or	all	members	(if	it	is	a	group)	by	configuring		executionTarget	.

There	are	a	number	of	additional	configuration	keys	available	for	the		SSHCommandEffector	:

Configuration
Key Default Description

command command	to	be	executed	on	the	execution	target

executionDir possible	values:	'GET',	'HEAD',	'POST',	'PUT',	'PATCH',	'DELETE',
'OPTIONS',	'TRACE'

shellEnv custom	shell	environment	where	the	command	is	executed

executionTarget ENTITY possible	values:	'MEMBERS',	'CHILDREN'

Here	is	a	simple	example	of	an		SshCommandEffector		definition:

		brooklyn.initializers:

		-	type:	org.apache.brooklyn.core.effector.ssh.SshCommandEffector

				brooklyn.config:

						name:	sayHiNetcat

						description:	Echo	a	small	hello	string	to	the	netcat	entity

						command:	|

								echo	$message	|	nc	$TARGET_HOSTNAME	4321

						parameters:

								message:

										description:	The	string	to	pass	to	netcat

										defaultValue:	hi	netcat

See		here		for	more	details.

HTTPCommandEffector

An		Effector		to	invoke	HTTP	endpoints.

It	allows	the	user	to	specify	the	URI,	the	HTTP	verb,	credentials	for	authentication	and	HTTP	headers.

There	are	a	number	of	additional	configuration	keys	available	for	the		HTTPCommandEffector	:

Effectors

72

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/effector/ssh/SshCommandEffector.html


Configuration	Key Default Description

uri URI	of	the	endpoint

httpVerb possible	values:	'GET',	'HEAD',	'POST',	'PUT',	'PATCH',
'DELETE',	'OPTIONS',	'TRACE'

httpUsername user	name	for	the	authentication

httpPassword password	for	the	authentication

headers application/json It	explicitly	supports		application/x-www-form-urlencoded	

httpPayload The	body	of	the	http	request

jsonPath A	jsonPath	expression	to	extract	values	from	a	json	object

jsonPathAndSensors A	map	where	keys	are	jsonPath	expressions	and	values	the
name	of	the	sensor	where	to	publish	extracted	values

When	a	the	header		HttpHeaders.CONTENT_TYPE		is	equals	to	application/x-www-form-urlencoded	and	the		httpPayload	
is	a		map	,	the	payload	is	transformed	into	a	single	string	using		URLEncoded	.

brooklyn.initializers:

-	type:	org.apache.brooklyn.core.effector.http.HttpCommandEffector

		brooklyn.config:

				name:	request-access-token

				description:	Request	an	access	token	for	the	Azure	API

				uri:

						$brooklyn:formatString:

						-	"https://login.windows.net/%s/oauth2/token"

						-	$brooklyn:config("tenant.id")

				httpVerb:	POST

				httpPayload:

						resource:	https://management.core.windows.net/

						client_id:	$brooklyn:config("application.id")

						grant_type:	client_credentials

						client_secret:	$brooklyn:config("application.secret")

				jsonPathAndSensors:

						$.access_token:	access.token

				headers:

						Content-Type:	"application/x-www-form-urlencoded"

See		here		for	more	details.

AddChildrenEffector

An		Effector		to	add	a	child	blueprint	to	an	entity.

brooklyn.initializers:

-	type:	org.apache.brooklyn.core.effector.AddChildrenEffector

		brooklyn.config:

				name:	add_tomcat

				blueprint_yaml:	|

								name:	sample

								description:	Tomcat	sample	JSP	and	servlet	application.

								origin:	http://www.oracle.com/nCAMP/Hand

								services:

								-

												type:	io.camp.mock:AppServer

												name:	Hello	WAR

												wars:

																/:	hello.war

												controller.spec:

																port:	80

Effectors

73

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/effector/http/HttpCommandEffector.html


								brooklyn.catalog:

								name:	catalog-name

								type:	io.camp.mock.MyApplication

								version:	0.9

								libraries:

								-	name:	org.apache.brooklyn.test.resources.osgi.brooklyn-test-osgi-entities

												version:	0.1.0

												url:	classpath:/brooklyn/osgi/brooklyn-test-osgi-entities.jar

				auto_start:	true

One	of	the	config	keys		BLUEPRINT_YAML		(containing	a	YAML	blueprint	(map	or	string))	or		BLUEPRINT_TYPE		(containing	a
string	referring	to	a	catalog	type)	should	be	supplied,	but	not	both.

See		here		for	more	details.

Writing	an	Effector

Your	First	Effector

Effectors	generally	perform	actions	on	entities.	Each	effector	instance	is	associated	with	an	entity,	and	at	runtime	it
will	typically	exectute	an	operation,	collect	the	result	and,	potentially,	publish	it	as	sensor	on	that	entity,	performing
some	computation.

Writing	an	effector	is	straightforward.	Simply	extend		AddEffector	,	providing	an	implementation	for
	newEffectorBuilder		and	adding	a	constructor	that	consumes	the	builder	or	override	an	existing	effector.

	public	MyEffector(ConfigBag	params)	{

				super(newEffectorBuilder(params).build());

}

public	static	EffectorBuilder<String>	newEffectorBuilder(ConfigBag	params)	{

				EffectorBuilder<String>	eff	=	AddEffector.newEffectorBuilder(String.class,	params);

				eff.impl(new	Body(eff.buildAbstract(),	params));

				return	eff;

}

and	supply	an		EffectorBody		similar	to:

protected	static	class	Body	extends	EffectorBody<String>	{

				...

				@Override

				public	String	call(final	ConfigBag	params)	{

					...

				}

}

Best	Practice

The	following	recommendations	should	be	considered	when	designing	effectors:

Effectors	should	be	small	and	composable

One	effector	which	executes	a	command	and	emits	a	sensor,	and	a	second	effector	which	uses	the	previous	sensor,
if	defined,	to	execute	another	operation.

Effectors

74

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/effector/AddChildrenEffector.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/effector/AddEffector.html


Effectors

75



Now	let's	bring	the	concept	of	the	"cluster"	back	in.	We	could	wrap	our	appserver	in	the	same		DynamicCluster		we
used	earlier,	although	then	we'd	need	to	define	and	configure	the	load	balancer.	But	another	blueprint,	the
	ControlledDynamicWebAppCluster	,	does	this	for	us.	It	takes	the	same		dynamiccluster.memberspec	,	so	we	can	build	a
fully	functional	elastic	3-tier	deployment	of	our		hello-world-sql		application	as	follows:

name:	appserver-clustered-w-db

services:

-	type:	org.apache.brooklyn.entity.webapp.ControlledDynamicWebAppCluster

		brooklyn.config:

				cluster.initial.size:	2

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

								brooklyn.config:

										wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-exampl

e-hello-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

										http.port:	8080+

										java.sysprops:

												brooklyn.example.db.url:

														$brooklyn:formatString:

																-	jdbc:%s%s?user=%s\\&password=%s

																-	$brooklyn:component("db").attributeWhenReady("datastore.url")

																-	visitors

																-	brooklyn

																-	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		id:	db

		name:	DB	HelloWorld	Visitors

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://github.com/apache/brooklyn-library/blob/master/examples/simple-web-c

luster/src/main/resources/visitors-creation-script.sql

This	sets	up	Nginx	as	the	controller	by	default,	but	that	can	be	configured	using	the		controllerSpec		key.	This	uses
the	same	externalized	config	as	in	other	examples	to	hide	the	password.

JBoss	is	actually	the	default	appserver	in	the		ControlledDynamicWebAppCluster	,	so	because		brooklyn.config		keys	in
Brooklyn	are	inherited	by	default,	the	same	blueprint	can	be	expressed	more	concisely	as:

name:	appserver-clustered-w-db-concise

services:

-	type:	org.apache.brooklyn.entity.webapp.ControlledDynamicWebAppCluster

		brooklyn.config:

				cluster.initial.size:	2

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				http.port:	8080+

				java.sysprops:	

						brooklyn.example.db.url:	$brooklyn:formatString("jdbc:%s%s?user=%s\\&password=%s",	component("db").attrib

uteWhenReady("datastore.url"),	"visitors",	"brooklyn",	$brooklyn:external("brooklyn-demo-sample",	"hidden-brook

lyn-password"))

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		id:	db

		name:	DB	HelloWorld	Visitors

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://github.com/apache/brooklyn-library/blob/master/examples/simple-web-c

luster/src/main/resources/visitors-creation-script.sql

The	other	nicety	supplied	by	the		ControlledDynamicWebAppCluster		blueprint	is	that	it	aggregates	sensors	from	the
appserver,	so	we	have	access	to	things	like		webapp.reqs.perSec.windowed.perNode	.	These	are	convenient	for	plugging
in	to	policies!	We	can	set	up	our	blueprint	to	do	autoscaling	based	on	requests	per	second	(keeping	it	in	the	range
10..100,	with	a	maximum	of	5	appserver	nodes)	as	follows:

Clusters	and	Policies

76



name:	appserver-w-policy

services:

-	type:	org.apache.brooklyn.entity.webapp.ControlledDynamicWebAppCluster

		brooklyn.config:

				cluster.initial.size:	1

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

								brooklyn.config:

										wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-exampl

e-hello-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

										http.port:	8080+

										java.sysprops:

												brooklyn.example.db.url:

														$brooklyn:formatString:

														-	jdbc:%s%s?user=%s\\&password=%s

														-	$brooklyn:component("db").attributeWhenReady("datastore.url")

														-	visitors

														-	brooklyn

														-	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

		brooklyn.policies:

		-	type:	org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy

				brooklyn.config:

						metric:	$brooklyn:sensor("brooklyn.entity.webapp.DynamicWebAppCluster",	"webapp.reqs.perSec.windowed.perN

ode")

						metricLowerBound:	10

						metricUpperBound:	100

						minPoolSize:	1

						maxPoolSize:	5

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		id:	db

		name:	DB	HelloWorld	Visitors

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://github.com/apache/brooklyn-library/raw/master/examples/simple-web-cl

uster/src/main/resources/visitors-creation-script.sql

Use	your	favorite	load-generation	tool	(	jmeter		is	one	good	example)	to	send	a	huge	volume	of	requests	against	the
server	and	see	the	policies	kick	in	to	resize	it.

Clusters	and	Policies

77



Java	blueprints	are	powerful,	but	also	rather	more	difficult	to	write	than	YAML.	Advanced	Java	skills	are	required.

The	main	uses	of	Java-based	blueprints	are:

Integration	with	a	service's	API	(e.g.	for	an	on-line	DNS	service).	This	could	take	advantage	of	existing	Java-
based	clients,	or	of	Java's	flexibility	to	chain	together	multiple	calls.
Complex	management	logic,	for	example	when	the	best	practices	for	adding/removing	nodes	from	a	cluster	is
fiddly	and	has	many	conditionals.
Where	the	developer	has	a	strong	preference	for	Java.	Anything	that	can	be	done	in	YAML	can	be	done	in	the
Java	API.	Once	the	blueprint	is	added	to	the	catalog,	the	use	of	Java	will	be	entirely	hidden	from	users	of	that
blueprint.

The	Apache	Brooklyn	community	is	striving	to	make	YAML-based	blueprints	as	simple	as	possible	-	if	you	come
across	a	use-case	that	is	hard	to	do	in	YAML	then	please	let	the	community	know.

Java	Entities

78



Maven	Archetype

Brooklyn	includes	a	maven	archetype,	which	can	be	used	to	create	the	project	structure	for	developing	a	new	Java
entity,	and	generating	the	OSGi	bundle	for	it.

Generating	the	Project

The	archetype	can	be	used	interactively,	by	running:

$	mvn	archetype:generate

The	user	will	be	prompted	for	the	archetype	to	use	(i.e.	group	"org.apache.brooklyn"	and	artifact	"brooklyn-archetype-
quickstart"),	as	well	as	options	for	the	project	to	be	created.

Alternatively,	all	options	can	be	supplied	at	the	command	line.	For	example,	if	creating	a	project	named	"autobrick"	for
"com.acme":

$	BROOKLYN_VERSION={{	book.brooklyn-version	}}

$	mvn	archetype:generate	\

				-DarchetypeGroupId=org.apache.brooklyn	\

				-DarchetypeArtifactId=brooklyn-archetype-quickstart	\

				-DarchetypeVersion=${BROOKLYN_VERSION}	\

				-DgroupId=com.acme	\

				-DartifactId=autobrick	\

				-Dversion=0.1.0-SNAPSHOT	\

				-DpackageName=com.acme.autobrick	\

				-DinteractiveMode=false

This	will	create	a	directory	with	the	artifact	name	(e.g.	"autobrick"	in	the	example	above).	Note	that	if	run	from	a
directory	containing	a	pom,	it	will	also	modify	that	pom	to	add	this	as	a	module!

The	project	will	contain	an	example	Java	entity.	You	can	test	this	using	the	supplied	unit	tests,	and	also	replace	it	with
your	own	code.

The		README.md		file	within	the	project	gives	further	guidance.

Building

To	build,	run	the	commands:

$	cd	autobrick

$	mvn	clean	install

Adding	to	the	Catalog

The	build	will	produce	an	OSGi	bundle	in		target/autobrick-0.1.0-SNAPSHOT.jar	,	suitable	for	use	in	the	Brooklyn
catalog	(using		brooklyn.libraries	).

To	use	this	in	your	Brooklyn	catalog	you	will	first	have	to	copy	the	target	jar	to	a	suitable	location.	For
developing/testing	purposes	storing	on	the	local	filesystem	is	fine.	For	production	use,	we	recommend	uploading	to	a
remote	maven	repository	or	similar.

Once	your	jar	is	in	a	suitable	location	the	next	step	is	to	add	a	new	catalog	item	to	Brooklyn.	The	project	comes	with	a
	catalog.bom		file,	located	in		src/main/resources	.	Modify	this	file	by	adding	a	'brooklyn.libraries'	statement	to	the	bom
pointing	to	the	jar.	For	example:

Creating	from	a	Maven	Archetype

79



brooklyn.catalog:

				brooklyn.libraries:

				-	file:///path/to/jar/autobrick-0.1.0-SNAPSHOT.jar

				version:	"0.1.0-SNAPSHOT"

				itemType:	entity

				items:

				-	id:	com.acme.autobrick.MySample

						item:

								type:	com.acme.autobrick.MySample

The	command	below	will	use	the	CLI	to	add	this	to	the	catalog	of	a	running	Brooklyn	instance:

				br	catalog	add	catalog.bom

After	running	that	command,	the	OSGi	bundle	will	have	been	added	to	the	OSGi	container,	and	the	entity	will	have
been	added	to	your	catalog.	It	can	then	be	used	in	the	same	way	as	regular	Brooklyn	entities.

For	example,	you	can	use	the	blueprint:

services:

-	type:	com.acme.autobrick.MySample

Testing	Entities

The	project	comes	with	unit	tests	that	demonstrate	how	to	test	entities,	both	within	Java	and	also	using	YAML-based
blueprints.

A	strongly	recommended	way	is	to	write	a	YAML	test	blueprint	using	the	test	framework,	and	making
this	available	to	anyone	who	will	use	your	entity.	This	will	allow	users	to	easily	run	the	test	blueprint	in	their	own
environment	(simply	by	deploying	it	to	their	own	Brooklyn	server)	to	confirm	that	the	entity	is	working	as	expected.	An
example	is	contained	within	the	project	at		src/test/resources/sample-test.yaml	.

Creating	from	a	Maven	Archetype

80



Intro
This	walkthrough	will	set	up	a	simple	entity,	add	it	to	the	catalog,	and	provision	it.

For	illustration	purposes,	we	will	write	an	integration	with	Github	Gist,	with	an	effector	to	create	new	gists.

Project	Setup
Follow	the	instructions	to	create	a	new	Java	project	using	the	archetype,	and	import	it	into	your	favorite	IDE.	This
example	assumes	you	used	the	groupId		com.acme		and	artifact	id		autobrick	.

First	ensure	you	can	build	this	project	at	the	command	line,	using		mvn	clean	install	.

Java	Entity	Classes
For	this	particular	example,	we	will	use	a	third	party	Gist	library,	so	will	need	to	add	that	as	a	dependency.	Add	the
following	to	your		pom.xml		inside	the		<dependencies>		section	(see	Maven	for	more	details):

<dependency>

		<groupId>org.eclipse.mylyn.github</groupId>

		<artifactId>org.eclipse.egit.github.core</artifactId>

		<version>2.1.5</version>

</dependency>

Create	a	new	Java	interface,		GistGenerator	,	to	describe	the	entity's	interface	(i.e.	the	configuration	options,	sensors,
and	effectors).	The	code	below	assumes	you	have	created	this	in	the	package		com.acme		for		src/main/java	.

package	com.acme;

import	java.io.IOException;

import	org.apache.brooklyn.api.entity.Entity;

import	org.apache.brooklyn.api.entity.ImplementedBy;

import	org.apache.brooklyn.config.ConfigKey;

import	org.apache.brooklyn.core.annotation.Effector;

import	org.apache.brooklyn.core.annotation.EffectorParam;

import	org.apache.brooklyn.core.config.ConfigKeys;

@ImplementedBy(GistGeneratorImpl.class)

public	interface	GistGenerator	extends	Entity	{

				ConfigKey<String>	OAUTH_KEY	=	ConfigKeys.newStringConfigKey("oauth.key",	"OAuth	key	for	creating	a	gist",

												"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");

				@Effector(description="Create	a	Gist")

				String	createGist(

												@EffectorParam(name="gistName",	description="Gist	Name",	defaultValue="Demo	Gist")	String	gistName,

												@EffectorParam(name="fileName",	description="File	Name",	defaultValue="Hello.java")	String	fileName

,

												@EffectorParam(name="gistContents",	description="Gist	Contents",	defaultValue="System.out.println(\

"Hello	World\");")	String	gistContents,

												@EffectorParam(name="oauth.key",	description="OAuth	key	for	creating	a	gist",	defaultValue="")	Stri

ng	oauthKey)	throws	IOException;

				@Effector(description="Retrieve	a	Gist")

				public	String	getGist(

												@EffectorParam(name="id",	description="Gist	id")	String	id,

												@EffectorParam(name="oauth.key",	description="OAuth	key	for	creating	a	gist",	defaultValue="")	Stri

Defining	and	Deploying

81

https://gist.github.com/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html


ng	oauthKey)	throws	IOException;

}

To	describe	each	part	of	this:

The		@ImplementedBy		indicates	the	implementation	class	for	this	entity	type	-	i.e.	the	class	to	instantiate	when	an
entity	of	this	type	is	created.
By	extending		Entity	,	we	indicate	that	this	interface	is	an	Entity	type.	We	could	alternatively	have	extended	one
of	the	other	sub-types	of	Entity.
The		OAUTH_KEY		is	a	configuration	key	-	it	is	configuration	that	can	be	set	on	the	entity	when	it	is	being
instantiated.
The		@Effector		annotation	indicates	that	the	given	method	is	an	effector,	so	should	be	presented	and	tracked	as
such.	Execution	of	the	effector	is	intercepted,	to	track	it	as	a	task	and	show	its	execution	in	the	Activity	view.
The		@EffectorParam		annotations	give	metadata	about	the	effector's	parameters.	This	metadata,	such	as	the
parameter	description,	is	available	to	those	using	the	client	CLI,	rest	API	and	web-console.

Note	there	is	an	alternative	way	of	defining	effectors	-	adding	them	to	the	entity	dynamically,	discussed	in	the	section
Dynamically	Added	Effectors.

Next	lets	add	the	implementation.	Create	a	new	Java	class	named		GistGeneratorImpl	.

package	com.acme;

import	java.io.IOException;

import	java.util.Collections;

import	org.apache.brooklyn.core.entity.AbstractEntity;

import	org.apache.brooklyn.util.text.Strings;

import	org.eclipse.egit.github.core.Gist;

import	org.eclipse.egit.github.core.GistFile;

import	org.eclipse.egit.github.core.service.GistService;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.google.common.collect.Iterables;

public	class	GistGeneratorImpl	extends	AbstractEntity	implements	GistGenerator	{

				private	static	final	Logger	LOG	=	LoggerFactory.getLogger(GistGeneratorImpl.class);

				@Override

				public	String	createGist(String	gistName,	String	fileName,	String	gistContents,	String	oathToken)	throws	IO

Exception	{

								if	(Strings.isBlank(oathToken))	oathToken	=	config().get(OAUTH_KEY);

								GistFile	file	=	new	GistFile();

								file.setContent(gistContents);

								Gist	gist	=	new	Gist();

								gist.setDescription(gistName);

								gist.setFiles(Collections.singletonMap(fileName,	file));

								gist.setPublic(true);

								GistService	service	=	new	GistService();

								service.getClient().setOAuth2Token(oathToken);

								LOG.info("Creating	Gist:	"	+		gistName);

								Gist	result	=	service.createGist(gist);

								return	result.getId();

				}

				@Override

				public	String	getGist(String	id,	String	oathToken)	throws	IOException	{

								if	(Strings.isBlank(oathToken))	oathToken	=	config().get(OAUTH_KEY);

								GistService	service	=	new	GistService();

Defining	and	Deploying

82



								service.getClient().setOAuth2Token(oathToken);

								Gist	gist	=	service.getGist(id);

								return	Iterables.getOnlyElement(gist.getFiles().values()).getContent();

				}

}

To	describe	each	part	of	this:

Extends		AbstractEntity		-	all	entity	implementations	should	extend	this,	or	one	of	its	sub-types.
Implements		GistGenerator	:	this	is	the	Entity	type	definition,	so	must	be	implemented.	Users	of	the	entity	will	only
refer	to	the	interface;	they	will	never	be	given	an	instance	of	the	concrete	class	-	instead	a	dynamic	proxy	is	used
(to	allow	remoting).
	org.slf4j.Logger		is	the	logger	used	throughout	Apache	Brooklyn.
Implements	the		createGist		effector	-	we	do	not	need	to	re-declare	all	the	annotations.
If	no		oath.key		parameter	was	passed	in,	then	use	the	configuration	set	on	the	entity.
Use	the	third	party	library	to	create	the	gist.

Configuring	GitHub

First,	create	a	github.com	account,	if	you	do	not	already	have	one.

Before	running	the	blueprint,	we'll	need	to	generate	an	access	token	that	has	permissions	to	create	a	gist
programmatically.

First	create	a	new	access	token	that	our	blueprint	will	use	to	create	a	gist:

Next,	grant	the	token	rights	to	create	gists:

Defining	and	Deploying

83

https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html
https://help.github.com/articles/creating-an-access-token-for-command-line-use/


Testing

The	archetype	project	comes	with	example	unit	tests	that	demonstrate	how	to	test	entities,	both	within	Java	and	also
using	YAML-based	blueprints.

We	will	create	a	similar	Java-based	test	for	this	blueprint.	Create	a	new	Java	class	named		GistGeneratorTest		in	the
package		com.acme	,	inside		src/test/java	.

You	will	need	to	substitute	the	github	access	token	you	generated	in	the	previous	section	for	the	placeholder	text
	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	.

package	com.acme;

import	static	org.testng.Assert.assertEquals;

import	org.apache.brooklyn.api.entity.EntitySpec;

import	org.apache.brooklyn.core.test.BrooklynAppUnitTestSupport;

import	org.testng.annotations.Test;

public	class	GistGeneratorTest	extends	BrooklynAppUnitTestSupport	{

				@Test

				public	void	testEntity()	throws	Exception	{

								String	oathKey	=	"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

								GistGenerator	entity	=	app.createAndManageChild(EntitySpec.create(GistGenerator.class));

								String	id	=	entity.createGist("myGistName",	"myFileName",	"myGistContents",	oathKey);

								String	contents	=	entity.getGist(id,	oathKey);

								assertEquals(contents,	"myGistContents");

				}

}

Similarly,	we	can	write	a	test	that	uses	the		GistGenerator		from	a	YAML	blueprint.	Create	a	new	Java	class	named
	GistGeneratorYamlTest		in	the	package		com.acme	,	inside		src/test/java	.

Defining	and	Deploying

84



Again	you	will	need	to	substitute	the	github	access	token	you	generated	in	the	previous	section	for	the	placeholder
text		xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	.	See	the	section	on	externalised	configuration	for	how	to	store	these
credentials	more	securely.

package	com.acme;

import	static	org.testng.Assert.assertEquals;

import	org.apache.brooklyn.api.entity.Entity;

import	org.apache.brooklyn.camp.brooklyn.AbstractYamlTest;

import	org.apache.brooklyn.core.entity.Entities;

import	org.testng.annotations.Test;

import	com.google.common.base.Joiner;

import	com.google.common.collect.Iterables;

public	class	GistGeneratorYamlTest	extends	AbstractYamlTest	{

				private	String	contents;

				@Test

				public	void	testEntity()	throws	Exception	{

								String	oathKey	=	"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

								String	yaml	=	Joiner.on("\n").join(

												"name:	my	test",

												"services:",

												"-	type:	com.acme.GistGenerator",

												"		brooklyn.config:",

												"				oauth.key:	"+oathKey);

								Entity	app	=	createAndStartApplication(yaml);

								waitForApplicationTasks(app);

								Entities.dumpInfo(app);

								GistGenerator	entity	=	(GistGenerator)	Iterables.getOnlyElement(app.getChildren());

								String	id	=	entity.createGist("myGistName",	"myFileName",	"myGistContents",	null);

								contents	=	entity.getGist(id,	null);

								assertEquals(contents,	"myGistContents");

				}

}

Building	the	OSGi	Bundle
Next	we	will	build	this	example	as	an	OSGi	Bundle	so	that	it	can	be	added	to	the	Apache	Brooklyn	server	at	runtime,
and	so	multiple	versions	of	the
blueprint	can	be	managed.

The		mvn	clean	install		will	automatically	do	this,	creating	a	jar	inside	the		target/		sub-directory	of	the	project.	This
works	by	using	the	Maven	Bundle	Plugin	which	we	get	automatically	by	declaring	the		pom.xml	's	parent	as		brooklyn-
downstream-parent	.

Adding	to	the	catalog
Similar	to	the		sample.bom		entity	that	ships	with	the	archetype,	we	will	define	a		.bom		file	to	add	our		GistGenerator		to
the	catalog.	Substitute	the	URL	below	for	your	own	newly	built	artifact	(which	will	be	in	the		target		sub-directory	after
running		mvn	clean	install	).

Defining	and	Deploying

85

https://www.osgi.org/developer/architecture/
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html


brooklyn.catalog:

		libraries:

		-	http://search.maven.org/remotecontent?filepath=com/google/code/gson/gson/2.2.2/gson-2.2.2.jar

		-	http://repo1.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.egit.github.core/

2.1.5_1/org.apache.servicemix.bundles.egit.github.core-2.1.5_1.jar

		-	http://developers.cloudsoftcorp.com/brooklyn/guide/blueprints/java/gist_generator/autobrick-0.1.0-SNAPSHOT.

jar

		id:	example.GistGenerator

		version:	"0.1.0-SNAPSHOT"

		itemType:	template

		description:	For	programmatically	generating	GitHub	Gists

		displayName:	Gist	Generator

		iconUrl:	classpath:///sample-icon.png

		item:

				services:

				-	type:	com.acme.GistGenerator

See	Handling	Bundle	Dependencies	for	a	description	of	the		brooklyn.libraries		used	above,	and	for	other	alternative
approaches.

The	command	below	will	use	the		br		CLI	to	add	this	to	the	catalog	of	a	running	Brooklyn	instance.	Substitute	the
credentials,	URL	and	port	for	those	of	your	server.

$	br	login	https://127.0.0.1:8443	admin	pa55w0rd

$	br	catalog	add	gist_generator.bom

Using	the	blueprint
The	YAML	blueprint	below	shows	an	example	usage	of	this	blueprint:

name:	my	sample

services:

-	type:	example.GistGenerator

		brooklyn.config:

				oauth.key:	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Note	the	type	name	matches	the	id	defined	in	the		.bom		file.

You	can	now	call	the	effector	by	any	of	the	standard	means	-	web	console,	REST	api,	or	Client	CLI.

Defining	and	Deploying

86



Some	Java	blueprints	will	require	third	party	libraries.	These	need	to	be	made	available	to	the	Apache	Brooklyn
runtime.	There	are	a	number	of	ways	this	can	be	achieved.

Classic	Mode:	Dropins	Folder

In	Brooklyn	classic	mode	(i.e.	when	not	using	Karaf),	jars	can	be	added	to		./lib/dropins/	.	After	restarting	Brooklyn,
these	will	be	available	on	the	classpath.

In	Brooklyn	classic	mode,	there	is	an	embedded	OSGi	container.	This	is	used	for	installing	libraries	referenced	in
catalog	items.

OSGi	Bundles

Introduction	to	OSGi	Bundles

An	OSGi	bundle	is	a	jar	file	with	additional	metadata	in	its	manifest	file.	The		MANIFEST.MF		file	contains	the	symbolic
name	and	version	of	the	bundle,	along	with	details	of	its	dependencies	and	of	the	packages	it	exports	(which	are	thus
visible	to	other	bundles).

The	maven-bundle-plugin	is	a	convenient	way	of	building	OSGi	bundles.

OSGi	Bundles	Declared	in	Catalog	Items

Within	a	catalog	item,	a	list	of	URLs	can	be	supplied	under		brooklyn.libraries	.	Each	URL	should	point	to	an	OSGi
bundle.	This	list	should	include	the	OSGi	bundle	that	has	the	Java	code	for	your	blueprint,	and	also	the	OSGi	bundles
that	it	depends	on	(including	all	transitive	dependencies).

It	is	vital	that	these	jars	are	built	correctly	as	OSGi	bundles,	and	that	all	transitive	dependencies	are	included.	The
bundles	will	be	added	to	Karaf	in	the	order	given,	so	a	bundle's	dependencies	should	be	listed	before	the	bundle(s)
that	depend	on	them.

In	the	GistGenerator	example,	the	catalog.bom	file	included	the	URL	of	the	dependency
	org.eclipse.egit.github.core	.	It	also	(before	that	line)	included	its	transitive	dependency,	which	is	a	specific	version
of		gson	.

For	Java	blueprint	developers,	this	is	often	the	most	convenient	way	to	share	a	blueprint.

Similarly	for	those	wishing	to	use	a	new	blueprint,	this	is	often	the	simplest	mechanism:	the	dependencies	are	fully
described	in	the	catalog	item,	which	makes	it	convenient	for	deploying	to	Apache	Brooklyn	instances	where	there	is
not	direct	access	to	Karaf	or	the	file	system.

Adding	Bundles	and	Features	Directly	to	Karaf

Bundles	and	features	can	be	added	manually,	directly	to	Karaf.

However,	note	this	only	affects	the	single	Karaf	instance.	If	running	in	HA	mode	or	if	provisioning	a	new	instance	of
Apache	Brooklyn,	the	bundles	will	also	need	to	be	added	to	these	Karaf	instances.

Karaf	Console

Login	to	the	Karaf	console	using		./bin/client	,	and	add	the	bundles	and	features	as	desired.

Examples	of	some	useful	commands	are	shown	below:

karaf@amp>	bundle:install	-s	http://repo1.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.

bundles.egit.github.core/2.1.5_1/org.apache.servicemix.bundles.egit.github.core-2.1.5_1.jar

Bundle	ID:	316

Handling	Bundle	Dependencies

87

https://en.wikipedia.org/wiki/OSGi#Bundles
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
https://karaf.apache.org/manual/latest/#_shell_console_basics


karaf@amp>	bundle:list	-t	0	-s	|	grep	github

318	|	Active			|		80	|	2.1.5.1																							|	org.apache.servicemix.bundles.egit.github.core

karaf@amp>	bundle:headers	org.apache.servicemix.bundles.egit.github.core

...

karaf@amp>	bundle:uninstall	org.apache.servicemix.bundles.egit.github.core

Karaf	Deploy	Folder

Karaf	support	hot	deployment.	There	are	a	set	of	deployers,	such	as	feature	and	KAR	deployers,	that	handle
deployment	of	artifacts	added	to	the		deploy		folder.

Note	that	the	Karaf	console	can	give	finer	control	(including	for	uninstall).

Karaf	KAR	files

Karaf	KAR	is	an	archive	format	(Karaf	ARchive).	A	KAR	is	a	jar	file	(so	a	zip	file),	which	contains	a	set	of	feature
descriptors	and	bundle	jar	files.

This	can	be	a	useful	way	to	bundle	a	more	complex	Java	blueprint	(along	with	its	dependencies),	to	make	it	easier	for
others	to	install.

A	KAR	file	can	be	built	using	the	maven	plugin	org.apache.karaf.tooling:features-maven-plugin.

Karaf	Features

A	karaf	feature.xml	defines	a	set	of	bundles	that	make	up	a	feature.	Once	a	feature	is	defined,	one	can	add	it	to	a
Karaf	instance:	either	directly	(e.g.	using	the	Karaf	console),	or	by	referencing	it	in	another	feature.xml	file.

Embedded	Dependencies

An	OSGi	bundle	can	embed	jar	dependencies	within	it.	This	allows	dependencies	to	be	kept	private	within	a	bundle,
and	easily	shipped	with	that	bundle.

To	keep	these	private,	it	is	vital	that	the	OSGi	bundle	does	not	import	or	export	the	packages	contained	within	those
embedded	jars,	and	does	not	rely	on	any	of	those	packages	in	the	public	signatures	of	any	packages	that	are
exported	or	imported.

Converting	Non-OSGi	Dependencies	to	Bundles

If	a	dependencies	is	not	available	as	an	OSGi	bundle	(and	you	don't	want	to	just	embed	the	jar),	there	are	a	few
options	for	getting	an	equivalent	OSGi	bundle:

Use	a	ServiceMix	re-packaged	jar,	if	available.	ServiceMix	have	re-packed	many	common	dependencies	as
OSGi	bundles,	and	published	them	on	Maven	Central.

Use	the		wrap:		prefix.	The	PAX	URL	Wrap	protocol	is	an	OSGi	URL	handler	that	can	process	your	legacy	jar	at
runtime	and	transform	it	into	an	OSGi	bundle.
This	can	be	used	when	declaring	a	dependency	in	your	feature.xml,	and	when	using	the	Karaf	console's
	bundle:install	.	Note	that	it	is	not	yet	supported	in	Brooklyn's		brooklyn.libraries		catalog	items.

Re-package	the	bundle	yourself,	offline,	to	produce	a	valid	OSGi	bundle.

Handling	Bundle	Dependencies

88

https://karaf.apache.org/manual/latest/#_deployers
https://karaf.apache.org/manual/latest/kar
https://karaf.apache.org/manual/latest/#_maven
https://karaf.apache.org/manual/latest/#_create_a_features_xml_karaf_feature_archetype
https://karaf.apache.org/manual/latest/#_shell_console_basics
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html#embedding-dependencies
https://search.maven.org
https://ops4j1.jira.com/wiki/display/paxurl/Wrap+Protocol


Handling	Bundle	Dependencies

89



Applications	written	in	YAML	can	similarly	be	written	in	Java.	However,	the	YAML	approach	is	recommended.

Define	your	Application	Blueprint
The	example	below	creates	a	three	tier	web	service,	composed	of	an	Nginx	load-balancer,	a	cluster	of	Tomcat	app-
servers,	and	a	MySQL	database.	It	is	similar	to	the	YAML	policies	example,	but	also	includes	the	MySQL	database	to
demonstrate	the	use	of	dependent	configuration.

package	com.acme.autobrick;

import	org.apache.brooklyn.api.entity.EntitySpec;

import	org.apache.brooklyn.api.policy.PolicySpec;

import	org.apache.brooklyn.api.sensor.AttributeSensor;

import	org.apache.brooklyn.api.sensor.EnricherSpec;

import	org.apache.brooklyn.core.entity.AbstractApplication;

import	org.apache.brooklyn.core.sensor.DependentConfiguration;

import	org.apache.brooklyn.core.sensor.Sensors;

import	org.apache.brooklyn.enricher.stock.Enrichers;

import	org.apache.brooklyn.entity.database.mysql.MySqlNode;

import	org.apache.brooklyn.entity.group.DynamicCluster;

import	org.apache.brooklyn.entity.proxy.nginx.NginxController;

import	org.apache.brooklyn.entity.webapp.tomcat.TomcatServer;

import	org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy;

import	org.apache.brooklyn.policy.ha.ServiceFailureDetector;

import	org.apache.brooklyn.policy.ha.ServiceReplacer;

import	org.apache.brooklyn.policy.ha.ServiceRestarter;

import	org.apache.brooklyn.util.time.Duration;

public	class	ExampleWebApp	extends	AbstractApplication	{

				@Override

				public	void	init()	{

								AttributeSensor<Double>	reqsPerSecPerNodeSensor	=	Sensors.newDoubleSensor(

																"webapp.reqs.perSec.perNode",

																"Reqs/sec	averaged	over	all	nodes");

								MySqlNode	db	=	addChild(EntitySpec.create(MySqlNode.class)

																.configure(MySqlNode.CREATION_SCRIPT_URL,	"https://bit.ly/brooklyn-visitors-creation-script"));

								DynamicCluster	cluster	=	addChild(EntitySpec.create(DynamicCluster.class)

																.displayName("Cluster")

																.configure(DynamicCluster.MEMBER_SPEC,	EntitySpec.create(TomcatServer.class)

																								.configure(TomcatServer.ROOT_WAR,	

																																"http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/bro

oklyn-example-hello-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.

war")

																								.configure(TomcatServer.JAVA_SYSPROPS.subKey("brooklyn.example.db.url"),

																																DependentConfiguration.formatString("jdbc:%s%s?user=%s&password=%s",

																																								DependentConfiguration.attributeWhenReady(db,	MySqlNode.DATASTORE_URL),

																																								"visitors",	"brooklyn",	"br00k11n"))

																								.policy(PolicySpec.create(ServiceRestarter.class)

																																.configure(ServiceRestarter.FAIL_ON_RECURRING_FAILURES_IN_THIS_DURATION,	Durati

on.minutes(5)))

																								.enricher(EnricherSpec.create(ServiceFailureDetector.class)

																																.configure(ServiceFailureDetector.ENTITY_FAILED_STABILIZATION_DELAY,	Duration.s

econds(30))))

																.policy(PolicySpec.create(ServiceReplacer.class))

																.policy(PolicySpec.create(AutoScalerPolicy.class)

																								.configure(AutoScalerPolicy.METRIC,	reqsPerSecPerNodeSensor)

																								.configure(AutoScalerPolicy.METRIC_LOWER_BOUND,	1)

																								.configure(AutoScalerPolicy.METRIC_UPPER_BOUND,	3)

																								.configure(AutoScalerPolicy.RESIZE_UP_STABILIZATION_DELAY,	Duration.seconds(2))

																								.configure(AutoScalerPolicy.RESIZE_DOWN_STABILIZATION_DELAY,	Duration.minutes(1))

																								.configure(AutoScalerPolicy.MAX_POOL_SIZE,	3))

																.enricher(Enrichers.builder().aggregating(TomcatServer.REQUESTS_PER_SECOND_IN_WINDOW)

Topology,	Dependencies,	and	Management	Policies

90



																								.computingAverage()

																								.fromMembers()

																								.publishing(reqsPerSecPerNodeSensor)

																								.build()));

								addChild(EntitySpec.create(NginxController.class)

																.configure(NginxController.SERVER_POOL,	cluster)

																.configure(NginxController.STICKY,	false));

				}

}

To	describe	each	part	of	this:

The	application	extends		AbstractApplication	.
It	implements		init()	,	to	add	its	child	entities.	The		init		method	is	called	only	once,	when	instantiating	the
entity	instance.
The		addChild		method	takes	an		EntitySpec	.	This	describes	the	entity	to	be	created,	defining	its	type	and	its
configuration.
The		brooklyn.example.db.url		is	a	system	property	that	will	be	passed	to	each		TomcatServer		instance.	Its	value
is	the	database's	URL	(discussed	below).
The	policies	and	enrichers	provide	in-life	management	of	the	application,	to	restart	failed	instances	and	to	replace
those	components	that	repeatedly	fail.
The		NginxController		is	the	load-balancer	and	reverse-proxy:	by	default,	it	round-robins	to	the	ip:port	of	each
member	of	the	cluster	configured	as	the		SERVER_POOL	.

Dependent	Configuration
Often	a	component	of	an	application	will	depend	on	another	component,	where	the	dependency	information	is	only
available	at	runtime	(e.g.	it	requires	the	IP	of	a	dynamically	provisioned	component).	For	example,	the	app-servers	in
the	example	above	require	the	database	URL	to	be	injected.

The	"DependentConfiguration"	methods	returns	a	future	(or	a	"promise"	in	the	language	of	some	other	programming
languages):	when	the	value	is	needed,	the	caller	will	block	to	wait	for
the	future	to	resolve.	It	will	block	only	"at	the	last	moment"	when	the	value	is	needed	(e.g.	after	the	VMs	have	been
provisioned	and	the	software	is	installed,	thus	optimising	the	provisioning	time).	It	will	automatically	monitor	the	given
entity's	sensor,	and	generate	the	value	when	the	sensor	is	populated.

The		attributeWhenReady		is	used	to	generate	a	configuration	value	that	depends	on	the	dynamic	sensor	value	of
another	entity	-	in	the	example	above,	it	will	not	be	available	until	that		MySqlNode.DATASTORE_URL		sensor	is	populated.
At	that	point,	the	JDBC	URL	will	be	constructed	(as	defined	in	the		formatString		method,	which	also	returns	a	future).

Topology,	Dependencies,	and	Management	Policies

91



Entity	Class	Hierarchy

By	convention	in	Brooklyn	the	following	words	have	a	particular	meaning:

Group	-	a	homogeneous	grouping	of	entities	(which	need	not	all	be	managed	by	the	same	parent	entity)
Cluster	-	a	homogeneous	collection	of	entities	(all	managed	by	the	"cluster"	entity)
Fabric	-	a	multi-location	collection	of	entities,	with	one	per	location;	often	used	with	a	cluster	per	location
Application	-	a	top-level	entity,	which	can	have	one	or	more	child	entities.

The	following	constructs	are	often	used	for	Java	entities:

entity	spec	defines	an	entity	to	be	created;	used	to	define	a	child	entity,	or	often	to	define	the	type	of	entity	in	a
cluster.
traits	(mixins)	providing	certain	capabilities,	such	as	Resizable	and	Startable.
Resizable	entities	can	re-sized	dynamically,	to	increase/decrease	the	number	of	child	entities.	For	example,
scaling	up	or	down	a	cluster.	It	could	similarly	be	used	to	vertically	scale	a	VM,	or	to	resize	a	disk.
Startable	indicates	the	effector	to	be	executed	on	initial	deployment	(	start()	)	and	on	tear	down	(	stop()	).

Configuration

Configuration	keys	are	typically	defined	as	static	named	fields	on	the	Entity	interface.	These	define	the	configuration
values	that	can	be	passed	to	the	entity	during	construction.	For	example:

public	static	final	ConfigKey<String>	ROOT_WAR	=	new	ConfigKeys.newStringConfigKey(

								"wars.root",

								"WAR	file	to	deploy	as	the	ROOT,	as	URL	(supporting	file:	and	classpath:	prefixes)");

If	supplying	a	default	value,	it	is	important	that	this	be	immutable.	Otherwise,	it	risks	users	of	the	blueprint	modifying
the	default	value,	which	would	affect	blueprints	that	are	subsequently	deployed.

One	can	optionally	define	a		@SetFromFlag("war")	.	This	defines	a	short-hand	for	configuring	the	entity.	However,	it
should	be	used	with	caution	-	when	using	configuration	set	on	a	parent	entity	(and	thus	inherited),	the		@SetFromFlag	
short-form	names	are	not	checked.	The	long	form	defined	in	the	constructor	should	be	meaningful	and	sufficient.	The
usage	of		@SetFromFlag		is	therefore	discouraged.

The	type		AttributeSensorAndConfigKey<?>		can	be	used	to	indicate	that	a	config	key	should	be	resolved,	and	its	value
set	as	a	sensor	on	the	entity	(when		ConfigToAttributes.apply(entity)		is	called).

A	special	case	of	this	is		PortAttributeSensorAndConfigKey	.	This	is	resolved	to	find	an	available	port	(by	querying	the
target	location).	For	example,	the	value		8081+		means	that	then	next	available	port	starting	from	8081	will	be	used.

Declaring	Sensors

Sensors	are	typically	defined	as	static	named	fields	on	the	Entity	interface.	These	define	the	events	published	by	the
entity,	which	interested	parties	can	subscribe	to.	For	example:

AttributeSensor<String>	MANAGEMENT_URL	=	Sensors.newStringSensor(

								"crate.managementUri",

								"The	address	at	which	the	Crate	server	listens");

Declaring	Effectors

Effectors	are	the	operations	that	an	entity	supports.	There	are	multiple	ways	that	an	entity	can	be	defined.	Examples
of	each	are	given	below.

Common	Classes	and	Entities

92



Effector	Annotation

A	method	on	the	entity	interface	can	be	annotated	to	indicate	it	is	an	effector,	and	to	provide	metadata	about	the
effector	and	its	parameters.

@org.apache.brooklyn.core.annotation.Effector(description="Retrieve	a	Gist")

public	String	getGist(@EffectorParam(name="id",	description="Gist	id")	String	id);

Static	Field	Effector	Declaration

A	static	field	can	be	defined	on	the	entity	to	define	an	effector,	giving	metadata	about	that	effector.

public	static	final	Effector<String>	EXECUTE_SCRIPT	=	Effectors.effector(String.class,	"executeScript")

								.description("invokes	a	script")

								.parameter(ExecuteScriptEffectorBody.SCRIPT)

								.impl(new	ExecuteScriptEffectorBody())

								.build();

In	this	example,	the	implementation	of	the	effector	is	an	instance	of		ExecuteScriptEffectorBody	.	This	implements
	EffectorBody	.	It	will	be	invoked	whenever	the	effector	is	called.

Dynamically	Added	Effectors

An	effector	can	be	added	to	an	entity	dynamically	-	either	as	part	of	the	entity's		init()		or	as	separate	initialization
code.	This	allows	the	implementation	of	the	effector	to	be	shared	amongst	multiple	entities,	without	sub-classing.	For
example:

Effector<Void>	GET_GIST	=	Effectors.effector(Void.class,	"createGist")

								.description("Create	a	Gist")

								.parameter(String.class,	"id",	"Gist	id")

								.buildAbstract();

public	static	void	CreateGistEffectorBody	implements	EffectorBody<Void>()	{

				@Override

				public	Void	call(ConfigBag	parameters)	{

								//	impl

								return	null;

				}

}

@Override

public	void	init()	{

				getMutableEntityType().addEffector(CREATE_GIST,	new	CreateGistEffectorBody());

}

Effector	Invocation

There	are	several	ways	to	invoke	an	effector	programmatically:

Where	there	is	an	annotated	method,	simply	call	the	method	on	the	interface.

Call	the		invoke		method	on	the	entity,	using	the	static	effector	declaration.	For	example:
	entity.invoke(CREATE_GIST,	ImmutableMap.of("id",	id));	.

Call	the	utility	method		org.apache.brooklyn.core.entity.Entities.invokeEffector	.	For	example:
	Entities.invokeEffector(this,	targetEntity,	CREATE_GIST,	ImmutableMap.of("id",	id));	.

Common	Classes	and	Entities

93



When	an	effector	is	invoked,	the	call	is	intercepted	to	wrap	it	in	a	task.	In	this	way,	the	effector	invocation	is	tracked	-	it
is	shown	in	the	Activity	view.

When		invoke		or		invokeEffector		is	used,	the	call	returns	a		Task		object	(which	extends		Future	).	This	allows	the
caller	to	understand	progress	and	errors	on	the	task,	as	well	as	calling		task.get()		to	retrieve	the	return	value.	Be
aware	that		task.get()		is	a	blocking	function	that	will	wait	until	a	value	is	available	before	returning.

Tasks

Warning:	the	task	API	may	be	changed	in	a	future	release.	However,	backwards	compatibility	will	be	maintained
where	possible.

When	implementing	entities	and	policies,	all	work	done	within	Brooklyn	is	executed	as	Tasks.	This	makes	it	trackable
and	visible	to	administrators.	For	the	activity	list	to	show	a	break-down	of	an	effector's	work	(in	real-time,	and	also
after	completion),	tasks	and	sub-tasks	must	be	created.

In	common	situations,	tasks	are	implicitly	created	and	executed.	For	example,	when	implementing	an	effector	using
the		@Effector		annotation	on	a	method,	the	method	invocation	is	automatically	wrapped	as	a	task.	Similarly,	when	a
subscription	is	passed	an	event	(e.g.	when	using		SensorEventListener.onEvent(SensorEvent<T>	event)	,	that	call	is	done
inside	a	task.

Within	a	task,	it	is	possible	to	create	and	execute	sub-tasks.	A	common	way	to	do	this	is	to	use		DynamicTasks.queue	.	If
called	from	within	a	a	"task	queuing	context"	(e.g.	from	inside	an	effector	implementation),	it	will	add	the	task	to	be
executed.	By	default,	the	outer	task	will	not	be	marked	as	done	until	its	queued	sub-tasks	are	complete.

When	creating	tasks,	the		TaskBuilder		can	be	used	to	create	simple	tasks	or	to	create	compound	tasks	whose	sub-
tasks	are	to	be	executed	either	sequentially	or	in	parallel.	For	example:

TaskBuilder.<Integer>builder()

								.displayName("stdout-example")

								.body(new	Callable<Integer>()	{	public	Integer	call()	{	System.out.println("example";	}	})

								.build();

There	are	also	builder	and	factory	utilities	for	common	types	of	operation,	such	as	executing	SSH	commands	using
	SshTasks	.

A	lower	level	way	to	submit	tasks	within	an	entity	is	to	call		getExecutionContext().submit(...)	.	This	automatically	tags
the	task	to	indicate	that	its	context	is	the	given	entity.

An	even	lower	level	way	to	execute	tasks	(to	be	ignored	except	for	power-users)	is	to	go	straight
to	the		getManagementContext().getExecutionManager().submit(...)	.	This	is	similar	to	the	standard	Java		Executor	,	but
also	supports	more	metadata	about	tasks	such	as	descriptions	and	tags.	It	also	supports	querying	for	tasks.	There	is
also	support	for	submitting		ScheduledTask		instances	which	run	periodically.

The		Tasks		and		BrooklynTaskTags		classes	supply	a	number	of	conveniences	including	builders	to	make	working	with
tasks	easier.

Subscriptions	and	the	Subscription	Manager

Entities,	locations,	policies	and	enrichers	can	subscribe	to	events.	These	events	could	be	attribute-change	events
from	other	entities,	or	other	events	explicitly	published	by	the	entities.

A	subscription	is	created	by	calling		subscriptions().subscribe(entity,	sensorType,	sensorEventListener)	.	The
	sensorEventListener		will	be	called	with	the	event	whenever	the	given	entity	emits	a	sensor	of	the	given	type.	If		null	
is	used	for	either	the	entity	or	sensor	type,	this	is	treated	as	a	wildcard.

Common	Classes	and	Entities

94



It	is	very	common	for	a	policy	or	enricher	to	subscribe	to	events,	to	kick	off	actions	or	to	publish	other	aggregated
attributes	or	events.

Common	Classes	and	Entities

95



Feeds

	Feed	s	within	Apache	Brooklyn	are	used	to	populate	an	entity's	sensors.	There	are	a	variety	of	feed	types,	which
commonly	poll	to	retrieve	the	raw	metrics	of	the	entity	(for	example	polling	an	HTTP	management	API,	or	over	JMX).

Persistence

There	are	two	ways	to	associate	a	feed	with	an	entity.

The	first	way	is	(within	the	entity)	to	call		feeds().addFeed(...)	.	This	persists	the	feed:	the	feed	will	be	automatically
added	to	the	entity	when	the	Brooklyn	server	restarts.	It	is	important	that	all	configuration	of	the	feed	is	persistable
(e.g.	not	using	any	in-line	anonymous	inner	classes	to	define	functions).

The	feed	builders	can	be	passed	a		uniqueTag(...)	,	which	will	be	used	to	ensure	that	on	rebind	there	will	not	be
multiple	copied	of	the	feed	(e.g.	if		rebind()		had	already	re-created	the	feed).

The	second	way	is	to	just	pass	to	the	feed's	builder	the	entity.	When	using	this	mechanism,	the	feed	will	be	wired	up
to	the	entity	but	it	will	not	be	persisted.	In	this	case,	it	is	important	that	the	entity's		rebind()		method	recreates	the
feed.

Types	of	Feed

HTTP	Feed

An		HttpFeed		polls	over	http(s).	An	example	is	shown	below:

private	HttpFeed	feed;

@Override

protected	void	connectSensors()	{

		super.connectSensors();

		feed	=	feeds().addFeed(HttpFeed.builder()

						.period(200)

						.baseUri(String.format("http://%s:%s/management/subsystem/web/connector/http/read-resource",	host,	port))

						.baseUriVars(ImmutableMap.of("include-runtime","true"))

						.poll(new	HttpPollConfig(SERVICE_UP)

										.onSuccess(HttpValueFunctions.responseCodeEquals(200))

										.onError(Functions.constant(false)))

						.poll(new	HttpPollConfig(REQUEST_COUNT)

										.onSuccess(HttpValueFunctions.jsonContents("requestCount",	Integer.class)))

						.build());

}

@Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

		if	(feed	!=	null)	feed.stop();

}

SSH	Feed

An	SSH	feed	executes	a	command	over	ssh	periodically.	An	example	is	shown	below:

private	AbstractCommandFeed	feed;

@Override

protected	void	connectSensors()	{

		super.connectSensors();

Feeds

96



		feed	=	feeds.addFeed(SshFeed.builder()

						.machine(mySshMachineLachine)

						.poll(new	CommandPollConfig(SERVICE_UP)

										.command("rabbitmqctl	-q	status")

										.onSuccess(new	Function()	{

														public	Boolean	apply(SshPollValue	input)	{

																return	(input.getExitStatus()	==	0);

														}}))

						.build());

}

@Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

		if	(feed	!=	null)	feed.stop();

}

WinRm	CMD	Feed

A	WinRM	feed	executes	a	windows	command	over	winrm	periodically.	An	example	is	shown	below:

private	AbstractCommandFeed	feed;

//@Override

protected	void	connectSensors()	{

		super.connectSensors();

		feed	=	feeds.addFeed(CmdFeed.builder()

																.entity(entity)

																.machine(machine)

																.poll(new	CommandPollConfig<String>(SENSOR_STRING)

																								.command("ipconfig")

																								.onSuccess(SshValueFunctions.stdout()))

																.build());

}

@Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

		if	(feed	!=	null)	feed.stop();

}

Windows	Performance	Counter	Feed

This	type	of	feed	retrieves	performance	counters	from	a	Windows	host,	and	posts	the	values	to	sensors.

One	must	supply	a	collection	of	mappings	between	Windows	performance	counter	names	and	Brooklyn	attribute
sensors.

This	feed	uses	WinRM	to	invoke	the	windows	utility	typeperf	to	query	for	a	specific	set	of	performance	counters,	by

name.	The	values	are	extracted	from	the	response,	and	published	to	the	entity's	sensors.	An	example	is	shown	below:

private	WindowsPerformanceCounterFeed	feed;

@Override

protected	void	connectSensors()	{

		feed	=	feeds.addFeed(WindowsPerformanceCounterFeed.builder()

						.addSensor("\\Processor(_total)\\%	Idle	Time",	CPU_IDLE_TIME)

						.addSensor("\\Memory\\Available	MBytes",	AVAILABLE_MEMORY)

						.build());

}

@Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

Feeds

97



		if	(feed	!=	null)	feed.stop();

}

JMX	Feed

This	type	of	feed	queries	over	JMX	to	retrieve	sensor	values.	This	can	query	attribute	values	or	call	operations.

The	JMX	connection	details	can	be	automatically	inferred	from	the	entity's	standard	attributes,	or	it	can	be	explicitly
supplied.

An	example	is	shown	below:

private	JmxFeed	feed;

@Override

protected	void	connectSensors()	{

		super.connectSensors();

		feed	=	feeds().addFeed(JmxFeed.builder()

						.period(5,	TimeUnit.SECONDS)

						.pollAttribute(new	JmxAttributePollConfig<Integer>(ERROR_COUNT)

										.objectName(requestProcessorMbeanName)

										.attributeName("errorCount"))

						.pollAttribute(new	JmxAttributePollConfig<Boolean>(SERVICE_UP)

										.objectName(serverMbeanName)

										.attributeName("Started")

										.onError(Functions.constant(false)))

						.build());

}

Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

		if	(feed	!=	null)	feed.stop();

}

Function	Feed

This	type	of	feed	periodically	executes	something	to	compute	the	attribute	values.	This	can	be	a		Callable	,		Supplier	
or	Groovy		Closure	.	It	must	be	persistable	(e.g.	not	use	an	in-line	anonymous	inner	classes).

An	example	is	shown	below:

public	static	class	ErrorCountRetriever	implements	Callable<Integer>	{

		private	final	Entity	entity;

		public	ErrorCountRetriever(Entity	entity)	{

				this.entity	=	entity;

		}

		@Override

		public	Integer	call()	throws	Exception	{

				//	TODO	your	implementation...

				return	0;

		}

}

private	FunctionFeed	feed;

@Override

protected	void	connectSensors()	{

		super.connectSensors();

		feed	=	feeds().addFeed(FunctionFeed.builder()

				.poll(new	FunctionPollConfig<Object,	Integer>(ERROR_COUNT)

Feeds

98



								.period(500,	TimeUnit.MILLISECONDS)

								.callable(new	ErrorCountRetriever(this))

								.onExceptionOrFailure(Functions.<Integer>constant(null))

				.build());

}

@Override

protected	void	disconnectSensors()	{

		super.disconnectSensors();

		if	(feed	!=	null)	feed.stop();

}

Feeds

99



Ways	to	write	an	entity
There	are	several	ways	to	write	a	new	entity:

For	Unix/Linux,	write	YAML	blueprints,	for	example	using	a		VanillaSoftwareProcess		and	configuring	it	with	your
scripts.
For	Windows,	write	YAML	blueprints	using		VanillaWindowsProcess		and	configure	the	PowerShell	scripts.
For	composite	entities,	use	YAML	to	compose	exiting	types	of	entities	(potentially	overwriting	parts	of	their
configuration),	and	wire	them	together.
Use	Chef	recipes.
Use	Salt	formulas.
Use	Ansible	playbooks.
Write	pure-java,	extending	existing	base-classes.	For	example,	the		GistGenerator		example.	These	can	use
utilities	such	as		HttpTool		and		BashCommands	.
Write	pure-Java	blueprints	that	extend		SoftwareProcess	.	However,	the	YAML	approach	is	strongly	recommended
over	this	approach.
Write	pure-Java	blueprints	that	compose	together	existing	entities,	for	example	to	manage	a	cluster.	Often	this	is
possible	in	YAML	and	that	approach	is	strongly	recommended.	However,	sometimes	the	management	logic	may
be	so	complex	that	it	is	easier	to	use	Java.

The	rest	of	this	section	covers	writing	an	entity	in	pure-java	(or	other	JVM	languages).

Things	To	Know
All	entities	have	an	interface	and	an	implementation.	The	methods	on	the	interface	are	its	effectors;	the	interface	also
defines	its	sensors.

Entities	are	created	through	the	management	context	(rather	than	calling	the
constructor	directly).	This	returns	a	proxy	for	the	entity	rather	than	the	real	instance,	which	is	important	in	a	distributed
management	plane.

All	entity	implementations	inherit	from		AbstractEntity	,	often	through	one	of	the	following:

	SoftwareProcessImpl	:	if	it's	a	software	process
	VanillaJavaAppImpl	:	if	it's	a	plain-old-java	app
	JavaWebAppSoftwareProcessImpl	:	if	it's	a	JVM-based	web-app
	DynamicClusterImpl	,		DynamicGroupImpl		or		AbstractGroupImpl	:	if	it's	a	collection	of	other	entities

Software-based	processes	tend	to	use	drivers	to	install	and	launch	the	remote	processes	onto	locations	which	support
that	driver	type.	For	example,		AbstractSoftwareProcessSshDriver		is	a	common	driver	superclass,	targetting
	SshMachineLocation		(a	machine	to	which	Brooklyn	can	ssh).	The	various		SoftwareProcess		entities	above	(and	some
of	the	exemplars	listed	at	the	end	of	this	page)	have	their	own	dedicated	drivers.

Finally,	there	are	a	collection	of	traits,	such	as		Resizable	,	in	the	package		brooklyn.entity.trait	.	These	provide
common	sensors	and	effectors	on	entities,	supplied	as	interfaces.	Choose	one	(or	more)	as	appropriate.

Key	Steps
NOTE:	Consider	instead	writing	a	YAML	blueprint	for	your	entity.

So	to	get	started:

Writing	an	Entity

100



1.	 Create	your	entity	interface,	extending	the	appropriate	selection	from	above,	to	define	the	effectors	and	sensors.
2.	 Include	an	annotation	like		@ImplementedBy(YourEntityImpl.class)		on	your	interface,	where		YourEntityImpl		will	be

the	class	name	for	your	entity	implementation.
3.	 Create	your	entity	class,	implementing	your	entity	interface	and	extending	the	classes	for	your	chosen	entity

super-types.	Naming	convention	is	a	suffix	"Impl"	for	the	entity	class,	but	this	is	not	essential.
4.	 Create	a	driver	interface,	again	extending	as	appropriate	(e.g.		SoftwareProcessDriver	).	The	naming	convention	is

to	have	a	suffix	"Driver".
5.	 Create	the	driver	class,	implementing	your	driver	interface,	and	again	extending	as	appropriate.	Naming

convention	is	to	have	a	suffix	"SshDriver"	for	an	ssh-based	implementation.	The	correct	driver	implementation	is
found	using	this	naming	convention,	or	via	custom	namings	provided	by	the		BasicEntityDriverFactory	.

6.	 Wire	the		public	Class	getDriverInterface()		method	in	the	entity	implementation,	to	specify	your	driver	interface.
7.	 Provide	the	implementation	of	missing	lifecycle	methods	in	your	driver	class	(details	below)
8.	 Connect	the	sensors	from	your	entity	(e.g.	overriding		connectSensors()		of		SoftwareProcessImpl	)..	See	the

sensor	feeds,	such	as		HttpFeed		and		JmxFeed	.

Any	JVM	language	can	be	used	to	write	an	entity.	However	use	of	pure	Java	is	encouraged	for	entities	in	core
brooklyn.

Helpful	References
A	few	handy	pointers	will	help	make	it	easy	to	build	your	own	entities.	Check	out	some	of	the	exemplar	existing
entities	(note,	some	of	the	other	entities	use	deprecated	utilities	and	a	deprecated	class	hierarchy;	it	is	suggested	to
avoid	these,	looking	at	the	ones	below	instead):

	JBoss7Server	

	MySqlNode	

You	might	also	find	the	following	helpful:

Entity	Design	Tips
The	User	Guide
The	Mailing	List

Writing	an	Entity

101

https://mail-archives.apache.org/mod_mbox/brooklyn-dev/


This	section	details	how	to	create	new	custom	application	components	or	groups	as	brooklyn	entities.

The	Entity	Lifecycle
Importance	of	serialization,	ref	to	How	mananagement	works
Parents	and	Membership	(groups)

What	to	Extend	--	Implementation	Classes
entity	implementation	class	hierarchy

	SoftwareProcess		as	the	main	starting	point	for	base	entities	(corresponding	to	software	processes),	and
subclasses	such	as		VanillaJavaApp	
	DynamicCluster		(multiple	instances	of	the	same	entity	in	a	location)	and		DynamicFabric		(clusters	in	multiple
location)	for	automatically	creating	many	instances,	supplied	with	an		EntityFactory		(e.g.
	BaseEntityFactory	)	in	the		factory		flag
	AbstractGroup		for	collecting	entities	which	are	parented	elsewhere	in	the	hierachy
	AbstractEntity		if	nothing	else	fits

traits	(mixins,	otherwise	known	as	interfaces	with	statics)	to	define	available	config	keys,	sensors,	and	effectors;
and	conveniences	e.g.		StartableMethods.{start,stop}		is	useful	for	entities	which	implement		Startable	

the		Entities		class	provides	some	generic	convenience	methods;	worth	looking	at	it	for	any	work	you	do

A	common	lifecycle	pattern	is	that	the		start		effector	(see	more	on	effectors	below)	is	invoked,	often	delegating
either	to	a	driver	(for	software	processes)	or	children	entities	(for	clusters	etc).

Configuration
AttributeSensorAndConfigKey	fields	can	be	automatically	converted	for		SoftwareProcess	.	This	is	done	in
	preStart()	.	This	must	be	done	manually	if	required	for	other	entities,	often	with
	ConfigToAttributes.apply(this)	.

Setting	ports	is	a	special	challenge,	and	one	which	the		AttributeSensorAndConfigKey		is	particularly	helpful	for,	cf
	PortAttributeSensorAndConfigKey		(a	subclass),	causing	ports	automatically	get	assigned	from	a	range	and
compared	with	the	target		PortSupplied		location.

Syntax	is	as	described	in	the	PortRange	interface.	For	example,	"8080-8099,8800+"	will	try	port	8080,	try
sequentially	through	8099,	then	try	from	8800	until	all	ports	are	exhausted.

This	is	particularly	useful	on	a	contended	machine	(localhost!).	Like	ordinary	configuration,	the	config	is	done	by
the	user,	and	the	actual	port	used	is	reported	back	as	a	sensor	on	the	entity.

Validation	of	config	values	can	be	applied	by	supplying	a		Predicate		to	the		constraint		of	a	ConfigKey	builder.
Constraints	are	tested	after	an	entity	is	initialised	and	before	an	entity	managed.	Useful	predicates	include:

	StringPredicates.isNonBlank	:	require	that	a	String	key	is	neither	null	nor	empty.
	ResourcePredicates.urlExists	:	require	that	a	URL	that	is	loadable	by	Brooklyn.	Use	this	to	confirm	that
necessary	resources	are	available	to	the	entity.
	Predicates.in	:	require	one	of	a	fixed	set	of	values.
	Predicates.containsPattern	:	require	that	a	value	match	a	regular	expression	pattern.

An	important	caveat	is	that	only	constraints	on	config	keys	that	are	on	an	entity's	type	hierarchy	can	be	tested
automatically.	Brooklyn	has	no	knowledge	of	the	true	type	of	other	keys	until	they	are	retrieved	with	a
	config().get(key)	.

Custom	Entity	Development

102



Implementing	Sensors
e.g.	HTTP,	JMX

Sensors	at	base	entities	are	often	retrieved	by	feeds	which	poll	the	entity's	corresponding	instance	in	the	real	world.
The		SoftwareProcess		provides	a	good	example;	by	subclassing	it	and	overriding	the		connectSensors()		method	you
could	wire	some	example	sensors	using	the	following:

public	void	connectSensors()	{

				super.connectSensors()

				httpFeed	=	HttpFeed.builder()

												.entity(this)

												.period(200)

												.baseUri(mgmtUrl)

												.poll(new	HttpPollConfig<Boolean>(SERVICE_UP)

																				.onSuccess(HttpValueFunctions.responseCodeEquals(200))

																				.onError(Functions.constant(false)))

												.poll(new	HttpPollConfig<Integer>(REQUEST_COUNT)

																				.onSuccess(HttpValueFunctions.jsonContents("requestCount",	Integer.class)))

												.build();

}

@Override

protected	void	disconnectSensors()	{

				super.disconnectSensors();

				if	(httpFeed	!=	null)	httpFeed.stop();

}

In	this	example	(a	simplified	version	of		JBoss7Server	),	the	url	returns	metrics	in	JSON.	We	report	the	entity	as	up	if
we	get	back	an	http	response	code	of	200,	or	down	if	any	other	response	code	or	exception.	We	retrieve	the	request
count	from	the	response	body,	and	convert	it	to	an	integer.

Note	the	first	line	(	super.connectSensors()	);	as	one	descends	into	specific	convenience	subclasses	(such	as	for	Java
web-apps),	the	work	done	by	the	parent	class's	overridden	methods	may	be	relevant,	and	will	want	to	be	invoked	or
even	added	to	a	resulting	list.

For	some	sensors,	and	often	at	compound	entities,	the	values	are	obtained	by	monitoring	values	of	other	sensors	on
the	same	(in	the	case	of	a	rolling	average)	or	different	(in	the	case	of	the	average	of	children	nodes)	entities.	This	is
achieved	by	policies,	described	below.

Implementing	Effectors
The		Entity		interface	defines	the	sensors	and	effectors	available.	The	entity	class	provides	wiring	for	the	sensors,
and	the	effector	implementations.	In	simple	cases	it	may	be	straightforward	to	capture	the	behaviour	of	the	effectors	in
a	simple	methods.	For	example	deploying	a	WAR	to	a	cluster	can	be	done	as	follows:

This	section	is	not	complete.	Feel	free	to	fork	the	docs	and	lend	a	hand.

For	some	entities,	specifically	base	entities,	the	implementation	of	effectors	might	need	other	tools	(such	as	SSH),
and	may	vary	by	location,	so	having	a	single	implementation	is	not	appropriate.

The	problem	of	multiple	inheritance	(e.g.	SSH	functionality	and	entity	inheritance)	and	multiple	implementations	(e.g.
SSH	versus	Windows)	is	handled	in	brooklyn	using	delegates	called	drivers.

In	the	implementations	of		JavaWebApp		entities,	the	behaviour	which	the	entity	always	does	is	captured	in	the	entity
class	(for	example,	breaking	deployment	of	multiple	WARs	into	atomic	actions),	whereas	implementations	which	is
specific	to	a	particular	entity	and	driver	(e.g.	using	scp	to	copy	the	WARs	to	the	right	place	and	install	them,	which	of

Custom	Entity	Development

103

https://github.com/apache/brooklyn-docs


course	is	different	among	appservers,	or	using	an	HTTP	or	JMX	management	API,	again	where	details	vary	between
appservers)	is	captured	in	a	driver	class.

Routines	which	are	convenient	for	specific	drivers	can	then	be	inherited	in	the	driver	class	hierarchy.	For	example,
when	passing	JMX	environment	variables	to	Java	over	SSH,		JavaSoftwareProcessSshDriver		extends
	AbstractSoftwareProcessSshDriver		and	parents		JBoss7SshDriver	.

Testing
Unit	tests	can	make	use	of		SimulatedLocation		and		TestEntity	,	and	can	extend		BrooklynAppUnitTestSupport	.
Integration	tests	and	use	a		LocalhostMachineProvisioningLocation	,	and	can	also	extend
	BrooklynAppUnitTestSupport	.

SoftwareProcess	Lifecycle
	SoftwareProcess		is	the	common	super-type	of	most	integration	components	(when	implementing	in	Java).

See		JBoss7Server		and		MySqlNode		for	exemplars.

The	methods	called	in	a		SoftwareProcess		entity's	lifecycle	are	described	below.	The	most	important	steps	are	shown
in	bold	(when	writing	a	new	entity,	these	are	the	methods	most	often	implemented).

Initial	creation	(via		EntitySpec		or	YAML):

no-arg	constructor
init
add	locations
apply	initializers
add	enrichers
add	policies
add	children
manages	entity	(so	is	discoverable	by	other	entities)

Start:

provisions	new	machine,	if	the	location	is	a		MachineProvisioningLocation	
creates	new	driver

calls		getDriverInterface	
Infers	the	concrete	driver	class	from	the	machine-type,	e.g.	by	default	it	adds	"Ssh"	before	the	word
"Driver"	in	"JBoss7Driver".
instantiates	the	driver,	calling	the	constructor	to	pass	in	the	entity	itself	and	the	machine	location

sets	attributes	from	config	(e.g.	for	ports	being	used)
calls		entity.preStart()	
calls		driver.start()	,	which:

runs	pre-install	command	(see	config	key		pre.install.command	)
uploads	install	resources	(see	config	keys		files.install		and		templates.install	)
calls		driver.install()	
runs	post-install	command	(see	config	key		post.install.command	)
calls		driver.customize()	
uploads	runtime	resources	(see	config	keys		files.runtime		and		templates.runtime	)
runs	pre-launch	command	(see	config	key		pre.launch.command	)
calls		driver.launch()	
runs	post-launch	command	(see	config	key		post.launch.command	)

Custom	Entity	Development

104



calls		driver.postLaunch()	
calls		entity.postDriverStart()	,	which:

calls		enity.waitForEntityStart()		-	waits	for		driver.isRunning()		to	report	true
calls		entity.connectSensors()	
calls		entity.waitForServicUp()	
calls		entity.postStart()	

Restart:

If	restarting	machine...
calls		entity.stop()	,	with		stopMachine		set	to	true.
calls	start
restarts	children	(if	configured	to	do	so)

Else	(i.e.	not	restarting	machine)...
calls		entity.preRestart()	
calls		driver.restart()	

calls		driver.stop()	
calls		driver.launch()	
calls		driver.postLaunch()	

restarts	children	(if	configured	to	do	so)
calls		entity.postDriverStart()	,	which:

calls		enity.waitForEntityStart()		-	polls		driver.isRunning()	,	waiting	for	true
calls		entity.waitForServicUp()	
calls		entity.postStart()	

Stop:

calls		entity.preStopConfirmCustom()		-	aborts	if	exception.
calls		entity.preStop()	
stops	the	process:

stops	children	(if	configured	to	do	so)
calls		driver.stop()	

stops	the	machine	(if	configured	to	do	so)
calls		entity.postStop()	

Rebind	(i.e.	when	Brooklyn	is	restarted):

no-arg	constructor
reconstitutes	entity	(e.g.	setting	config	and	attributes)
If	entity	was	running...

calls		entity.rebind()	;	if	previously	started	then:
creates	the	driver	(same	steps	as	for	start)
calls		driver.rebind()	
calls		entity.connectSensors()	

attaches	policies,	enrichers	and	persisted	feeds
manages	the	entity	(so	is	discoverable	by	other	entities)

Custom	Entity	Development

105



Any	entity	can	use	the	standard	"service-up"	and	"service-state"	sensors	to	inform	other	entities	and	the	GUI	about	its
status.

In	normal	operation,	entities	should	publish	at	least	one	"service	not-up	indicator",	using	the
	ServiceNotUpLogic.updateNotUpIndicator		method.	Each	such	indicator	should	have	a	unique	name	or	input	sensor.
	Attributes.SERVICE_UP		will	then	be	updated	automatically	when	there	are	no	not-up	indicators.

When	there	are	transient	problems	that	can	be	detected,	to	trigger		ON_FIRE		status	entity	code	can	similarly	set
	ServiceProblemsLogic.updateProblemsIndicator		with	a	unique	namespace,	and	subsequently	clear	it	when	the	problem
goes	away.	These	problems	are	reflected	at	runtime	in	the		SERVICE_PROBLEMS		sensor,	allowing	multiple	problems	to	be
tracked	independently.

When	an	entity	is	changing	the	expected	state,	e.g.	starting	or	stopping,	the	expected	state	can	be	set	using
	ServiceStateLogic.setExpectedState	;	this	expected	lifecycle	state	is	considered	together	with		SERVICE_UP		and
	SERVICE_PROBLEMS		to	compute	the	actual	state.	By	default	the	logic	in		ComputeServiceState		is	applied.

For	common	entities,	good	out-of-the-box	logic	is	applied,	as	follows:

For		SoftwareProcess		entities,	lifecycle	service	state	is	updated	by	the	framework	and	a	service	not-up	indicator	is
linked	to	the	driver		isRunning()		check.

For	common	parents,	including		AbstractApplication		and		AbstractGroup		subclasses	(including	clusters,	fabrics,
etc),	the	default	enrichers	analyse	children	and	members	to	set	a	not-up	indicator	(requiring	at	least	one	child	or
member	who	is	up)	and	a	problem	indicator	(if	any	children	or	members	are	on-fire).	In	some	cases	other	quorum
checks	are	preferable;	this	can	be	set	e.g.	by	overriding	the		UP_QUORUM_CHECK		or	the		RUNNING_QUORUM_CHECK	,	as
follows:

public	static	final	ConfigKey<QuorumCheck>	UP_QUORUM_CHECK	=	ConfigKeys.newConfigKeyWithDefault(AbstractGro

up.UP_QUORUM_CHECK,	

				"Require	all	children	and	members	to	be	up	for	this	node	to	be	up",

				QuorumChecks.all());

Alternatively	the		initEnrichers()		method	can	be	overridden	to	specify	a	custom-configured	enricher	or	set
custom	config	key	values	(as	done	e.g.	in		DynamicClusterImpl		so	that	zero	children	is	permitted	provided	when
the	initial	size	is	configured	to	be	0).

For	sample	code	to	set	and	more	information	on	these	methods'	behaviours,	see	javadoc	in		ServiceStateLogic	,
overrides	of		AbstractEntity.initEnrichers()		and	tests	in		ServiceStateLogicTests	.

Notes	on	Advanced	Use
The	enricher	to	derive		SERVICE_UP		and		SERVICE_STATE_ACTUAL		from	the	maps	and	expected	state	values	discussed
above	is	added	by	the		AbstractEntity.initEnrichers()		method.	This	method	can	be	overridden	--	or	excluded
altogether	by	by	overriding		init()		--	and	can	add	enrichers	created	using	the
	ServiceStateLogic.newEnricherFromChildren()		method	suitably	customized	using	methods	on	the	returned	spec
object,	for	instance	to	look	only	at	members	or	specify	a	quorum	function	(from		QuorumChecks	).	If	different	logic	is
required	for	computing		SERVICE_UP		and		SERVICE_STATE_ACTUAL	,	use
	ServiceStateLogic.newEnricherFromChildrenState()		and		ServiceStateLogic.newEnricherFromChildrenUp()	,	noting	that
the	first	of	these	will	replace	the	enricher	added	by	the	default		initEnrichers()	,	whereas	the	second	one	runs	with	a
different	namespace	(unique	tag).	For	more	information	consult	the	javadoc	on	those	classes.

Entities	can	set		SERVICE_UP		and		SERVICE_STATE_ACTUAL		directly.	Provided	these	entities	never	use	the
	SERVICE_NOT_UP_INDICATORS		and		SERVICE_PROBLEMS		map,	the	default	enrichers	will	not	override	these	values.

Service	State

106



Service	State

107



Brooklyn	supports	a	plug-in	system	for	defining	"entitlements"	--	essentially	permissions.

Any	entitlement	scheme	can	be	implemented	by	supplying	a	class	which	implements	one	method	on	one	class:

public	interface	EntitlementManager	{

				public	<T>	boolean	isEntitled(@Nullable	EntitlementContext	context,	@Nonnull	EntitlementClass<T>	entitlemen

tClass,	@Nullable	T	entitlementClassArgument);

}

This	answers	the	question	who	is	allowed	do	what	to	whom,	looking	at	the	following	fields:

	context	:	the	user	who	is	logged	in	and	is	attempting	an	action	(extensions	can	contain	additional	metadata)
	entitlementClass	:	the	type	of	action	being	queried,	e.g.		DEPLOY_APPLICATION		or		SEE_SENSOR		(declared	in	the
class		Entitlements	)
	entitlementClassArgument	:	details	of	the	action	being	queried,	such	as	the	blueprint	in	the	case	of
	DEPLOY_APPLICATION		or	the	entity	and	sensor	name	in	the	case	of		SEE_SENSOR	

To	set	a	custom	entitlements	manager	to	apply	across	the	board,	simply	use:

brooklyn.entitlements.global=org.apache.brooklyn.core.mgmt.entitlement.AcmeEntitlementManager

The	example	above	refers	to	a	sample	manager	which	is	included	in	the	test	JARs	of	Brooklyn,	which	you	can	see
here,	and	include	in	your	project	by	adding	the	core	tests	JAR	to	your		dropins		folder.

There	are	some	entitlements	schemes	which	exist	out	of	the	box,	so	for	a	simpler	setup,	see	Operations:
Entitlements.

There	are	also	more	complex	schemes	which	some	users	have	developed,	including	LDAP	extensions	which	re-use
the	LDAP	authorization	support	in	Brooklyn,	allowing	permissions	objects	to	be	declared	in	LDAP	leveraging	regular
expressions.	For	more	information	on	this,	ask	on	IRC	or	the	mailing	list,	and	see

EntitlementManager.

Entitlements

108

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/api/mgmt/entitlement/EntitlementManager.html


Brooklyn	can	deploy	to	Windows	servers	using	WinRM	to	run	commands.	These	deployments	can	be	expressed	in
pure	YAML,	and	utilise	Powershell	to	install	and	manage	the	software	process.	This	approach	is	similar	to	the	use	of
SSH	for	UNIX-like	servers.

About	WinRM
WinRM	-	or	Windows	Remote	Management	to	give	its	full	title	-	is	a	system	administration	service	provided	in	all
recent	Windows	Server	operating	systems.	It	allows	remote	access	to	system	information	(provided	via	WMI)	and	the
ability	to	execute	commands.	For	more	information	refer	to	Microsoft's	MSDN	article	on	Windows	Remote
Management.aspx).

WinRM	is	available	by	default	in	Windows	Server,	but	is	not	enabled	by	default.	Brooklyn	will,	in	most	cases,	be	able
to	switch	on	WinRM	support,	but	this	is	dependent	on	your	cloud	provider	supporting	a	user	metadata	service	with
script	execution	(see	below).

Locations	for	Windows
You	must	define	a	new	location	in	Brooklyn	for	Windows	deployments.	Windows	deployments	require	a	different	VM
image	ID	to	Linux,	as	well	as	some	other	special	configuration,	so	you	must	have	separate	Brooklyn	locations	for
Windows	and	Linux	deployments.

In	particular,	you	will	most	likely	want	to	set	these	properties	on	your	location:

	imageId		or		imageNameRegex		-	select	your	preferred	Windows	Server	image	from	your	cloud	provider.
	hardwareId		or		minRam	/	minCores		-	since	Windows	machines	generally	require	more	powerful	servers,	ensure
you	get	a	machine	with	the	required	specification.
	useJcloudsSshInit		-	this	must	be	set	to		false	.	Without	this	setting,	jclouds	will	attempt	to	connect	to	the	new
VMs	using	SSH,	which	will	fail	on	Windows	Server.
	templateOptions		-	you	may	also	wish	to	request	a	larger	disk	size.	This	setting	is	cloud	specific;	on	AWS,	you
can	request	a	100GB	disk	by	setting	this	property	to		{mapNewVolumeToDeviceName:	["/dev/sda1",	100,	true]}	.

In	your	YAML	blueprint:

...

location:

		jclouds:aws-ec2:

				region:	us-west-2

				identity:	AKA_YOUR_ACCESS_KEY_ID

				credential:	<access-key-hex-digits>

				imageNameRegex:	Windows_Server-2012-R2_RTM-English-64Bit-Base-.*

				imageOwner:	801119661308

				hardwareId:	m3.medium

				useJcloudsSshInit:	false

				templateOptions:	{mapNewVolumeToDeviceName:	["/dev/sda1",	100,	true]}

...

Alternatively,	you	can	define	a	new	named	location	in		brooklyn.properties	:

brooklyn.location.named.AWS\	Oregon\	Win	=	jclouds:aws-ec2:us-west-2

brooklyn.location.named.AWS\	Oregon\	Win.displayName	=	AWS	Oregon	(Windows)

brooklyn.location.named.AWS\	Oregon\	Win.imageNameRegex	=	Windows_Server-2012-R2_RTM-English-64Bit-Base-.*

brooklyn.location.named.AWS\	Oregon\	Win.imageOwner	=	801119661308

brooklyn.location.named.AWS\	Oregon\	Win.hardwareId	=	m3.medium

brooklyn.location.named.AWS\	Oregon\	Win.useJcloudsSshInit	=	false

brooklyn.location.named.AWS\	Oregon\	Win.templateOptions	=	{mapNewVolumeToDeviceName:	["/dev/sda1",	100,	true]}

Windows	Blueprints

109

https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85


A	Sample	Blueprint
Creating	a	Windows	VM	is	done	using	the		org.apache.brooklyn.entity.software.base.VanillaWindowsProcess		entity
type.	This	is	very	similar	to		VanillaSoftwareProcess	,	but	adapted	to	work	for	Windows	and	WinRM	instead	of	Linux.
We	suggest	you	read	the	documentation	for	VanillaSoftwareProcess	to	find	out	what	you	can	do	with	this	entity.

Entity	authors	are	strongly	encouraged	to	write	Windows	Powershell	or	Batch	scripts	as	separate	files,	to	configure
these	to	be	uploaded,	and	then	to	configure	the	appropriate	command	as	a	single	line	that	executes	given	script.

For	example	-	here	is	a	simplified	blueprint	(but	see	Tips	and	Tricks	below!):

name:	Server	with	7-Zip

location:

		jclouds:aws-ec2:

				region:	us-west-2

				identity:	AKA_YOUR_ACCESS_KEY_ID

				credential:	<access-key-hex-digits>

				imageNameRegex:	Windows_Server-2012-R2_RTM-English-64Bit-Base-.*

				imageOwner:	801119661308

				hardwareId:	m3.medium

				useJcloudsSshInit:	false

				templateOptions:	{mapNewVolumeToDeviceName:	["/dev/sda1",	100,	true]}

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaWindowsProcess

		brooklyn.config:

				templates.preinstall:

						file:///Users/richard/install7zip.ps1:	"C:\\install7zip.ps1"

				install.command:	powershell	-command	"C:\\install7zip.ps1"

				customize.command:	echo	true

				launch.command:	echo	true

				stop.command:	echo	true

				checkRunning.command:	echo	true

				installer.download.url:	http://www.7-zip.org/a/7z938-x64.msi

The	installation	script	-	referred	to	as		/Users/richard/install7zip.ps1		in	the	example	above	-	is:

$Path	=	"C:\InstallTemp"

New-Item	-ItemType	Directory	-Force	-Path	$Path

$Url	=	"${config['installer.download.url']}"

$Dl	=	[System.IO.Path]::Combine($Path,	"installer.msi")

$WebClient	=	New-Object	System.Net.WebClient

$WebClient.DownloadFile(	$Url,	$Dl	)

Start-Process	"msiexec"	-ArgumentList	'/qn','/i',$Dl	-RedirectStandardOutput	(	[System.IO.Path]::Combine($Path,

	"stdout.txt")	)	-RedirectStandardError	(	[System.IO.Path]::Combine($Path,	"stderr.txt")	)	-Wait

Where	security-related	operation	are	to	be	executed,	it	may	require	the	use	of		CredSSP		to	obtain	the	correct
Administrator	privileges:	you	may	otherwise	get	an	access	denied	error.	See	the	sub-section	How	and	Why	to	re-
authenticate	within	a	powershell	script	for	more	details.

This	is	only	a	very	simple	example.	A	more	complex	example	can	be	found	in	the	Microsoft	SQL	Server	blueprint	in
the	Brooklyn	source	code.

Tips	and	Tricks
The	best	practices	for	other	entities	(e.g.	using	VanillaSoftwareProcess)	apply	for	WinRM	as	well.

Windows	Blueprints

110



Execution	Phases

Blueprint	authors	are	strongly	encouraged	to	provide	an	implementation	for	install,	launch,	stop	and	checkRunning.
These	are	vital	for	the	generic	effectors	such	as	stopping	and	restarting	the	process.

Powershell

Powershell	commands	can	be	supplied	using	config	options	such	as		launch.powershell.command	.

This	is	an	alternative	to	supplying	a	standard	batch	command	using	config	such	as		launch.command	.	For	a	given
phase,	only	one	of	the	commands	(Powershell	or	Batch)	should	be	supplied.

Getting	the	Right	Exit	Codes

WinRM	(or	at	least	the	chosen	WinRM	client!)	can	return	a	zero	exit	code	even	on	error	in	certain	circumstances.	It	is
therefore	advisable	to	follow	the	guidelines	below.

For	a	given	command,	write	the	Powershell	or	Batch	script	as	a	separate	multi-command	file.	Upload	this	(e.g.	by
including	it	in	the		files.preinstall		configuration).	For	the	configuration	of	the	given	command,	execute	the	file.

When	you	have	a	command	inside	the	powershell	script	which	want	to	report	its	non	zero	exiting,	please	consider
adding	a	check	for	its	exit	code	after	it.	Example:

&	"C:\install.exe"

If	($lastexitcode	-ne	0)	{

				exit	$lastexitcode

}

For	Powershell	files,	consider	including

$ErrorActionPreference	=	"Stop"

at	the	start	of	the	file.		$ErrorActionPreference		Determines	how	Windows	PowerShell	responds	to	a	non-terminating
error	(an	error	that	does	not	stop	the	cmdlet	processing)	at	the	command	line	or	in	a	script,	cmdlet,	or	provider,	such
as	the	errors	generated	by	the	Write-Error	cmdlet.	https://technet.microsoft.com/en-us/library/hh847796.aspx

See	Incorrect	Exit	Codes	under	Known	Limitations	below.

Executing	Scripts	From	Batch	Commands

In	a	batch	command,	you	can	execute	a	batch	file	or	Powershell	file.	For	example:

install.command:	powershell	-NonInteractive	-NoProfile	-Command	"C:\\install7zip.ps1"

Or	alternatively:

install.command:	C:\\install7zip.bat

Executing	Scripts	From	Powershell

In	a	Powershell	command,	you	can	execute	a	batch	file	or	Powershell	file.	There	are	many	ways	to	do	this	(see	official
Powershell	docs).	For	example:

install.powershell.command:	"&	C:\\install7zip.ps1"

Windows	Blueprints

111

https://technet.microsoft.com/en-us/library/hh847796.aspx


Or	alternatively:

install.powershell.command:	"&	C:\\install7zip.bat"

Note	the	quotes	around	the	command.	This	is	because	the	"&"	has	special	meaning	in	a	YAML	value.

Parameterised	Scripts

Calling	parameterised	Batch	and	Powershell	scripts	is	done	in	the	normal	Windows	way	-	see	offical	Microsoft	docs.
For	example:

install.command:	"c:\\myscript.bat	myarg1	myarg2"

Or	as	a	Powershell	example:

install.powershell.command:	"&	c:\\myscript.ps1	-key1	myarg1	-key2	myarg2"

It	is	also	possible	to	construct	the	script	parameters	by	referencing	attributes	of	this	or	other	entities	using	the
standard		attributeWhenReady		mechanism.	For	example:

install.command:	$brooklyn:formatString("c:\\myscript.bat	%s",	component("db").attributeWhenReady("datastore.ur

l"))

Powershell	-	Using	Start-Process

When	you	are	invoking	a	command	from	a	powershell	script	with		Start-Process		cmdlet,	please	use	the		-Wait		and
the		-PassThru		arguments.	Example		Start-Process	C:\mycommand	-Wait	-PassThru	

Using		-Wait		guarantees	that	the	script	process	and	its	children	and	thus	the	winrm	session	won't	be	terminated	until
it	is	finished.		-PassThru		Returns	a	process	object	for	each	process	that	the	cmdlet	started.	By	default,	this	cmdlet
does	not	generate	any	output.	See	https://technet.microsoft.com/en-us/library/hh849848.aspx

Rebooting

Where	a	reboot	is	required	as	part	of	the	entity	setup,	this	can	be	configured	using	config	like
	pre.install.reboot.required		and		install.reboot.required	.	If	required,	the	installation	commands	can	be	split
between	the	pre-install,	install	and	post-install	phases	in	order	to	do	a	reboot	at	the	appropriate	point	of	the	VM	setup.

We	Strongly	recommend	to	write	blueprints	in	a	way	that	they	do	NOT	restart	automatically	windows	and	use
one	of	the		pre.install.reboot.required		or		install.reboot.required		parameters	to	perform	restart.

Install	Location

Blueprint	authors	are	encouraged	to	explicitly	specify	the	full	path	for	file	uploads,	and	for	paths	in	their	Powershell
scripts	(e.g.	for	installation,	configuration	files,	log	files,	etc).

How	and	Why	to	re-authenticate	within	a	powershell	script

Some	installation	scripts	require	the	use	of	security-related	operations.	In	some	environments,
these	fail	by	default	when	executed	over	WinRM,	even	though	the	script	may	succeed	when	run	locally
(e.g.	by	using	RDP	to	connect	to	the	machine	and	running	the	script	manually).	There	may	be	no

Windows	Blueprints

112

https://technet.microsoft.com/en-us/library/hh849848.aspx


clear	indication	from	Windows	why	it	failed	(e.g.	for	MSSQL	install,	the	only	clue	is	a
security	exception	in	the	installation	log).

When	a	script	is	run	over	WinRM,	the	credentials	under	which	the	script	are	run	are	marked	as	'remote'	credentials,
which	are	prohibited	from	running	certain	security-related	operations.	The	solution	is	to	obtain	a	new	set	of	credentials
within	the	script	and	use	those	credentials	to	required	commands.

The	WinRM	client	uses	Negotiate+NTLM	to	authenticate	against	the	machine.	This	mechanism	applies	certain
restrictions	to	executing	commands	on	the	windows	host.

For	this	reason	you	should	enable	CredSSP	on	the	windows	host	which	grants	all	privileges	available	to	the	user.
https://technet.microsoft.com/en-us/library/hh849719.aspx#sectionSection4

To	use		Invoke-Command	-Authentication	CredSSP		the	Windows	Machine	has	to	have:

Up	and	running	WinRM	over	http.	The	custom-enable-credssp.ps1	script	enables	winrm	over	http	because
	Invoke-Command		use	winrm	over	http	by	default.	Invoke-Command	can	be	used	with	-UseSSL	option	but	this	will
lead	to	modifying	powershell	scripts.	With	always	enabling	winrm	over	http	on	the	host,	blueprint's	powershell
scripts	remain	consistent	and	not	depend	on	the	winrm	https/http	environments.	We	hope	future	versions	of
winrm4j	will	support	CredSSP	out	of	the	box	and	wrapping	commands	in	Invoke-Command	will	not	be	needed.
Added	trusted	host	entries	which	will	use	Invoke-Command
Allowed	CredSSP

All	the	above	requirements	are	enabled	in	Apache	Brooklyn	through	brooklyn-
server/software/base/src/main/resources/org/apache/brooklyn/software/base/custom-enable-credssp.ps1	script	which
enables	executing	commands	with	CredSSP	in	the	general	case.	The	script	works	for	most	of	the	Windows	images
out	there	version	2008	and	later.

Please	ensure	that	Brooklyn's	changes	are	compatible	with	your	organisation's	security	policy.

Check	Microsoft	Documentation	for	more	information	about	Negotiate	authenticate	mechanism	on
technet.microsoft.com.aspx)

Re-authentication	also	requires	that	the	password	credentials	are	passed	in	plain	text	within	the	script.	Please	be
aware	that	it	is	normal	for	script	files	-	and	therefore	the	plaintext	password	-	to	be	saved	to	the	VM's	disk.	The	scripts
are	also	accessible	via	the	Brooklyn	web-console's	activity	view.	Access	to	the	latter	can	be	controlled	via
Entitlements.

As	an	example	(taken	from	MSSQL	install),	the	command	below	works	when	run	locally,	but	fails	over	WinRM:

(	$driveLetter	+	"setup.exe")	/ConfigurationFile=C:\ConfigurationFile.ini

The	code	below	can	be	used	instead	(note	this	example	uses	Freemarker	templating):

&	winrm	set	winrm/config/service/auth	'@{CredSSP="true"}'

&	winrm	set	winrm/config/client/auth	'@{CredSSP="true"}'

#

$pass	=	'${attribute['windows.password']}'

$secpasswd	=	ConvertTo-SecureString	$pass	-AsPlainText	-Force

$mycreds	=	New-Object	System.Management.Automation.PSCredential	($($env:COMPUTERNAME	+	"\${location.user}"),	$s

ecpasswd)

#

$exitCode	=	Invoke-Command	-ComputerName	$env:COMPUTERNAME	-Credential	$mycreds	-ScriptBlock	{

				param($driveLetter)

				$process	=	Start-Process	(	$driveLetter	+	"setup.exe")	-ArgumentList	"/ConfigurationFile=C:\ConfigurationFi

le.ini"	-RedirectStandardOutput	"C:\sqlout.txt"	-RedirectStandardError	"C:\sqlerr.txt"	-Wait	-PassThru	-NoNewWi

ndow

				$process.ExitCode

}	-Authentication	CredSSP	-ArgumentList	$driveLetter

#

Windows	Blueprints

113

https://technet.microsoft.com/en-us/library/hh849719.aspx#sectionSection4
https://github.com/apache/brooklyn-server/blob/master/software/base/src/main/resources/org/apache/brooklyn/software/base/custom-enable-credssp.ps1
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378748(v=vs.85


exit	$exitCode

In	this	example,	the		${...}		format	is	FreeMarker	templating.	Those	sections	will	be	substituted	before	the	script	is
uploaded	for	execution.	To	explain	this	example	in	more	detail:

	${attribute['windows.password']}		is	substituted	for	the	entity's	attribute	"windows.password".	This	(clear-text)
password	is	sent	as	part	of	the	script.	Assuming	that	HTTPS	and	NTLM	is	used,	the	script	will	be	encrypted	while
in-flight.

The		${location.user}		gets	(from	the	entity's	machine	location)	the	username,	substituting	this	text	for	the	actual
username.	In	many	cases,	this	will	be	"Administrator".	However,	on	some
clouds	a	different	username	(with	admin	privileges)	will	be	used.

The	username	and	password	are	used	to	create	a	new	credential	object	(having	first	converted	the	password	to	a
secure	string).

Credential	Security	Service	Provider	(CredSSP)	is	used	for	authentication,	to	pass	the	explicit
credentials	when	using		Invoke-Command	.

Windows	AMIs	on	AWS

Windows	AMIs	in	AWS	change	regularly	(to	include	the	latest	Windows	updates).	If	using	the	community	AMI,	it	is
recommended	to	use	an	AMI	name	regex,	rather	than	an	image	id,	so	that	the	latest	AMI	is	always	picked	up.	If	an
image	id	is	used,	it	may	fail	as	Amazon	will	delete	their	old	Windows	AMIs.

If	using	an	image	regex,	it	is	recommended	to	include	the	image	owner	in	case	someone	else	uploads	a	similarly
named	AMI.	For	example:

brooklyn.location.named.AWS\	Oregon\	Win	=	jclouds:aws-ec2:us-west-2

brooklyn.location.named.AWS\	Oregon\	Win.imageNameRegex	=	Windows_Server-2012-R2_RTM-English-64Bit-Base-.*

brooklyn.location.named.AWS\	Oregon\	Win.imageOwner	=	801119661308

...

stdout	and	stderr	in	a	Powershell	script
When	calling	an	executable	in	a	Powershell	script,	the	stdout	and	stderr	will	usually	be	output	to	the	console.	This	is
captured	by	Brooklyn,	and	shown	in	the	activities	view	under	the	specific	tasks.

An	alternative	is	to	redirect	stdout	and	stderr	to	a	file	on	the	VM,	which	can	be	helpful	if	one	expects	sys	admins	to	log
into	the	VM.	However,	be	warned	that	this	would	hide	the	stdout/stderr	from	Brooklyn's	activities	view.

For	example,	instead	of	running	the	following:

D:\setup.exe	/ConfigurationFile=C:\ConfigurationFile.ini

The	redirect	can	be	achieved	by	using	the		Start-Process		scriptlet:

Start-Process	D:\setup.exe	-ArgumentList	"/ConfigurationFile=C:\ConfigurationFile.ini"	-RedirectStandardOutput	

"C:\sqlout.txt"	-RedirectStandardError	"C:\sqlerr.txt"	-PassThru	-Wait

The		-ArgumentList		is	simply	the	arguments	that	are	to	be	passed	to	the	executable,		-RedirectStandardOutput		and
	RedirectStandardError		take	file	locations	for	the	output	(if	the	file	already	exists,	it	will	be	overwritten).	The		-PassThru	
argument	indicates	that	Powershell	should	write	to	the	file	in	addition	to	the	console,	rather	than	instead	of	the
console.	The		-Wait		argument	will	cause	the	scriptlet	to	block	until	the	process	is	complete.

Windows	Blueprints

114



Further	details	can	be	found	on	the	Start-Process	documentation	page	on	the	Microsoft	TechNet	site.

Troubleshooting
Much	of	the	operations	troubleshooting	guide	is	applicable	for	Windows	blueprints.

User	metadata	service	requirement

WinRM	requires	activation	and	configuration	before	it	will	work	in	a	standard	Windows	Server	deployment.	To
automate	this,	Brooklyn	will	place	a	setup	script	in	the	user	metadata	blob.	Services	such	as	Amazon	EC2's
	Ec2ConfigService		will	automatically	load	and	execute	this	script.	If	your	chosen	cloud	provider	does	not	support
	Ec2ConfigService		or	a	similar	package,	or	if	your	cloud	provider	does	not	support	user	metadata,	then	you	must	pre-
configure	a	Windows	image	with	the	required	WinRM	setup	and	make	Brooklyn	use	this	image.

If	the	configuration	options		userMetadata		or		userMetadataString		are	used	on	the	location,	then	this	will	override	the
default	setup	script.	This	allows	one	to	supply	a	custom	setup	script.	However,	if	userMetadata	contains	something
else	then	the	setup	will	not	be	done	and	the	VM	may	not	not	be	accessible	remotely	over	WinRM.

Credentials	issue	requiring	special	configuration

When	a	script	is	run	over	WinRM	over	HTTP,	the	credentials	under	which	the	script	are	run	are	marked	as	'remote'
credentials,	which	are	prohibited	from	running	certain	security-related	operations.	This	may	prevent	certain
operations.	The	installer	from	Microsoft	SQL	Server	is	known	to	fail	in	this	case,	for	example.	For	a	workaround,
please	refer	to	How	and	Why	to	re-authenticate	withing	a	powershell	script	above.

WebServiceException:	Could	not	send	Message

We	detected	a		WebServiceException		and	different		SocketException		during	deployment	of	long	lasting	Application
Blueprint	against	VcloudDirector.

Launching	the	blueprint	bellow	was	giving	constantly	this	type	of	error	on	launch	step.

services:

		type:	org.apache.brooklyn.entity.software.base.VanillaWindowsProcess

		brooklyn.config:

				pre.install.command:	echo	preInstallCommand

				install.command:	echo	installCommand	>	C:\\install.txt

				post.install.command:	echo	postInstallCommand

				customize.command:	echo	customizeCommand

				pre.launch.command:	echo	preLaunchCommand

				launch.powershell.command:	|

						Start-Sleep	-s	400

						Write-Host	Test	Completed

				post.launch.command:	echo	postLaunchCommand

				checkRunning.command:	echo	checkRunningCommand

				stop.command:	echo	stopCommand

With	series	of	tests	we	concluded	that	on	the	Vcloud	Director	environment	we	were	using	a	restart	was	happening	~2
minutes	after	the	VM	is	provisioned.	Logging	in	the	host	and	search	for	System	event	of	type	1074	in	Windows	Event
Viewer,	we	found	two	1074	events	where	the	second	one	was

The	process	C:\Windows\system32\winlogon.exe	(W2K12-STD)	has	initiated	the	restart	of	computer	WIN-XXXX	on	beha

lf	of	user

NT	AUTHORITY\SYSTEM	for	the	following	reason:	Operating	System:	Upgrade	(Planned)	Reason	Code:	0x80020003	Shutd

own	Type:	restart	Comment:

Windows	Blueprints

115

https://technet.microsoft.com/en-us/library/hh849848.aspx


Normally	on	other	clouds	only	one	restart	event	is	registered	and	the	first	time	winrm	connection	is	made	the	Windows
VM	is	ready	for	use.

For	this	particular	case	when	you	want	this	second	restart	to	finish	we	made		waitWindowsToStart		location	parameter
which	basically	adds	additional	check	assuring	the	Windows	VM	provisioning	is	done.

For	example	when	using		waitWindowsToStart:	5m		location	parameter,	Apache	Brooklyn	will	wait	5	minutes	to	see	if	a
disconnect	occurs.	If	it	does,	then	it	will	again	wait	5m	for	the	machine	to	come	back	up.	The	default	behaviour	in
Apache	Brooklyn	is	to	consider	provisioning	done	on	the	first	successful	winrm	connection,	without	waiting	for	restart.

To	determine	whether	you	should	use	this	parameter	you	should	carefully	inspect	how	the	image	you	choose	to
provision	is	behaving.	If	the	description	above	matches	your	case	and	you	are	getting	connection	failure	message
in	the	middle	of	the	installation	process	for	your	blueprints,	a	restart	probably	occurred	and	you	should	try	this
parameter.

Before	using	this	parameter	we	advice	to	check	whether	this	is	really	your	case.	To	verify	the	behavior	check	as
described	above.

AMIs	not	found

If	using	the	imageId	of	a	Windows	community	AMI,	you	may	find	that	the	AMI	is	deleted	after	a	few	weeks.	See
Windows	AMIs	on	AWS	above.

VM	Provisioning	Times	Out

In	some	environments,	provisioning	of	Windows	VMs	can	take	a	very	long	time	to	return	a	usable	VM.	If	the	image	is
old,	it	may	install	many	security	updates	(and	reboot	several	times)	before	it	is	usable.

On	a	VMware	vCloud	Director	environment,	the	guest	customizations	can	cause	the	VM	to	reboot	(sometimes	several
times)	before	the	VM	is	usable.

This	could	cause	the	WinRM	connection	attempts	to	timeout.	The	location	configuration	option		waitForWinRmAvailable	
defaults	to		30m		(i.e.	30	minutes).	This	can	be	increased	if	required.

Incorrectly	prepared	Windows	template	can	cause	the	deployment	to	time-out	expecting	an	interaction	by	the	user.
You	can	verify	if	this	is	the	case	by	RDP	to	the	deployment	which	is	taking	to	much	time	to	complete.	It	is
recommended	to	manually	deploy	a	single	VM	for	every	newly	created	Windows	template	to	verify	that	it	can	be	used
for	unattended	installations	and	it	doesn't	wait	and/or	require	an	input	by	the	user.	See	Windows	template	settings	for
an	Unattended	Installation	under	Known	Limitations	below.

Windows	log	files

Details	of	the	commands	executed,	and	their	results,	can	be	found	in	the	Brooklyn	log	and	in	the	Brooklyn	web-
console's	activity	view.

There	will	also	be	log	files	on	the	Windows	Server.	System	errors	in	Windows	are	usually	reported	in	the	Windows
Event	Log	-
see	https://technet.microsoft.com/en-us/library/cc766042.aspx	for	more	information.

Additional	logs	may	be	created	by	some	Windows	programs.	For	example,	MSSQL	creates	a	log	in
	%programfiles%\Microsoft	SQL	Server\130\Setup	Bootstrap\Log\		-	for	more	information	see
https://msdn.microsoft.com/en-us/library/ms143702.aspx.

Known	Limitations

Windows	Blueprints

116

https://technet.microsoft.com/en-us/library/cc766042.aspx
https://msdn.microsoft.com/en-us/library/ms143702.aspx


WinRM	2.0	supports	encryption	mechanisms	on	top	of	HTTP.	However	those	are	not	supported	in	Apache	Brooklyn.
For	production	adoptions	please	make	sure	you	follow	Microsoft	Guidelines	https://msdn.microsoft.com/en-
us/library/ee309366(v=vs.85).aspx

Apache	Brooklyn	limitations	on	using	WinRM	over	HTTP	and	HTTPS

By	default	Apache	Brooklyn	is	currently	using	unencrypted	HTTP	for	WinRM	communication.	It	does	not	support
encrypted	HTTP	for	WinRM.

HTTPS	is	supported	but	there	is	no	mechanism	of	specifying	which	certificates	to	trust.	Currently	Apache	Brooklyn	will
accept	any	certificate	used	in	a	HTTPS	WinRM	connection.

Incorrect	Exit	Codes

Some	limitations	with	WinRM	(or	at	least	the	chosen	WinRM	Client!)	are	listed	below:

Single-line	Powershell	files

When	a	Powershell	file	contains	just	a	single	command,	the	execution	of	that	file	over	WinRM	returns	exit	code	0	even
if	the	command	fails!	This	is	the	case	for	even	simple	examples	like		exit	1		or		thisFileDoesNotExist.exe	.

A	workaround	is	to	add	an	initial	command,	for	example:

Write-Host	dummy	line	for	workaround	

exit	1

Direct	Configuration	of	Powershell	commands

If	a	command	is	directly	configured	with	Powershell	that	includes		exit	,	the	return	code	over	WinRM	is	not	respected.
For	example,	the	command	below	will	receive	an	exit	code	of	0.

launch.powershell.command:	|

		echo	first

		exit	1

Direct	Configuration	of	Batch	commands

If	a	command	is	directly	configured	with	a	batch	exit,	the	return	code	over	WinRM	is	not	respected.	For	example,	the
command	below	will	receive	an	exit	code	of	0.

launch.command:	exit	/B	1

Non-zero	Exit	Code	Returned	as	One

If	a	batch	or	Powershell	file	exits	with	an	exit	code	greater	than	one	(or	negative),	this	will	be	reported	as	1	over
WinRM.

We	advise	you	to	use	native	commands	(non-powershell	ones)	since	executing	it	as	a	native	command	will	return	the
exact	exit	code	rather	than	1.	For	instance	if	you	have	installmssql.ps1	script	use		install.command:	powershell	-
command	"C:\\installmssql.ps1"		rather	than	using		install.powershell.command:	"C:\\installmssql.ps1"		The	first	will
give	you	an	exact	exit	code	rather	than	1

PowerShell	"Preparing	modules	for	first	use"

Windows	Blueprints

117

https://msdn.microsoft.com/en-us/library/ee309366(v=vs.85).aspx


The	first	command	executed	over	WinRM	has	been	observed	to	include	stderr	saying	"Preparing	modules	for	first
use",	such	as	that	below:

<	CLIXML

<Objs	Version="1.1.0.1"	xmlns="http://schemas.microsoft.com/powershell/2004/04"><Obj	S="progress"	RefId="0"><TN

	RefId="0"><T>System.Management.Automation.PSCustomObject</T><T>System.Object</T></TN><MS><I64	N="SourceId">1</

I64><PR	N="Record"><AV>Preparing	modules	for	first	use.</AV><AI>0</AI><Nil	/><PI>-1</PI><PC>-1</PC><T>Completed

</T><SR>-1</SR><SD>	</SD></PR></MS></Obj><Obj	S="progress"	RefId="1"><TNRef	RefId="0"	/><MS><I64	N="SourceId">2

</I64><PR	N="Record"><AV>Preparing	modules	for	first	use.</AV><AI>0</AI><Nil	/><PI>-1</PI><PC>-1</PC><T>Complet

ed</T><SR>-1</SR><SD>	</SD></PR></MS></Obj></Objs>

The	command	still	succeeded.	This	has	only	been	observed	on	private	clouds	(e.g.	not	on	AWS).	It	could	be	related	to
the	specific	Windows	images	in	use.	It	is	recommended	that	VM	images	are	prepared	carefully,	e.g.	so	that	security
patches	are	up-to-date	and	the	VM	is	suitably	initialised.

WinRM	executeScript	failed:	httplib.BadStatusLine:	''

As	described	in	https://issues.apache.org/jira/browse/BROOKLYN-173,	a	failure	has	been	observed	where	the	10
attempts	to	execute	the	command	over	WinRM	failed	with:

httplib.BadStatusLine:	''

Subsequently	retrying	the	command	worked.	It	is	unclear	what	caused	the	failure,	but	could	have	been	that	the
Windows	VM	was	not	yet	in	the	right	state.

One	possible	workaround	is	to	ensure	the	Windows	VM	is	in	a	good	state	for	immediate	use	(e.g.	security	updates	are
up-to-date).	Another	option	is	to	increase	the	number	of	retries,	which	defaults	to	10.	This	is	a	configuration	option	on
the	machine	location,	so	can	be	set	on	the	location's	brooklyn.properties	or	in	the	YAML:

execTries:	20

Direct	Configuration	of	Multi-line	Batch	Commands	Not	Executed

If	a	command	is	directly	configured	with	multi-line	batch	commands,	then	only	the	first	line	will	be	executed.	For
example	the	command	below	will	only	output	"first":

launch.command:	|

		echo	first

		echo	second

The	workaround	is	to	write	a	file	with	the	batch	commands,	have	that	file	uploaded,	and	execute	it.

Note	this	is	not	done	automatically	because	that	could	affect	the	capture	and	returning	of	the	exit	code	for	the
commands	executed.

Install	location

Work	is	required	to	better	configure	a	default	install	location	on	the	VM	(e.g.	so	that	environment	variables	are	set).
The	installation	pattern	for	linux-based	blueprints,	of	using	brooklyn-managed-processes/installs,	is	not	used	or
recommended	on	Windows.	Files	will	be	uploaded	to	C:\	if	no	explicit	directory	is	supplied,	which	is	untidy,
unnecessarily	exposes	the	scripts	to	the	user,	and	could	cause	conflicts	if	multiple	entities	are	installed.

Blueprint	authors	are	strongly	encourages	to	explicitly	specific	directories	for	file	uploads	and	in	their	Powershell
scripts.

Windows	Blueprints

118

https://issues.apache.org/jira/browse/BROOKLYN-173


Windows	template	settings	for	an	Unattended	Installation

Windows	template	needs	certain	configuration	to	be	applied	to	prevent	windows	setup	UI	from	being	displayed.	The
default	behavior	is	to	display	it	if	there	are	incorrect	or	empty	settings.	Showing	Setup	UI	will	prevent	the	proper
deployment,	because	it	will	expect	interaction	by	the	user	such	as	agreeing	on	the	license	agreement	or	some	of	the
setup	dialogs.

Detailed	instruction	how	to	prepare	an	Unattended	installation	are	provided	at	https://technet.microsoft.com/en-
us/library/cc722411%28v=ws.10%29.aspx.

Windows	Blueprints

119

https://technet.microsoft.com/en-us/library/cc722411%28v=ws.10%29.aspx


Brooklyn	provides	a	selection	of	test	entities	which	can	be	used	to	validate	Blueprints	via	YAML.	The	basic	building
block	is	a	TargetableTestComponent,	which	is	used	to	resolve	a	target.	There	are	two	different	groups	of	entities	that
inherit	from	TargetableTestComponent.	The	first	is	structural,	which	effects	how	the	tests	are	run,	for	example	by
affecting	the	order	they	are	run	in.	The	second	group	is	validation,	which	is	used	to	confirm	the	application	is	deployed
as	intended,	for	example	by	checking	some	sensor	value.

Structural	test	entities	include:

	TestCase		-	starts	child	entities	sequentially.
	ParallelTestCase		-	starts	child	entities	in	parallel.
	LoopOverGroupMembersTestCase		-	creates	a	TargetableTestComponent	for	each	member	of	a	group.
	InfrastructureDeploymentTestCase		-	will	create	the	specified	Infrastructure	and	then	deploy	the	target	entity
specifications	there.

Validation	test	entities	include:

	TestSensor		-	perform	assertion	on	a	specified	sensor.
	TestEffector		-	perform	assertion	on	response	to	effector	call.
	TestHttpCall		-	perform	assertion	on	response	to	specified	HTTP	GET	Request.
	TestSshCommand		-	test	assertions	on	the	result	of	an	ssh	command	on	the	same	machine	as	the	target	entity.
	TestWinrmCommand		-	test	assertions	on	the	result	of	a	WinRM	command	on	the	same	machine	as	the	target	entity.
	TestEndpointReachable		-	assert	that	a	TCP	endpoint	is	reachable.	The	endpoint	can	be	in	a	number	of	different
formats:	a	string	in	the	form	of		ip:port		or	URI	format;	or	a		com.google.common.net.HostAndPort		instance;	or	a
	java.net.URI		instance;	or	a		java.net.URL		instance.

TargetableTestComponents	can	be	chained	together,	with	the	target	being	inherited	by	the	components	children.	For
example,	a	ParallelTestCase	could	be	created	that	has	a	TestHttpCall	as	a	child.	As	long	as	the	TestHttpCall	itself
does	not	have	a	target,	it	will	use	the	target	of	it's	parent,	ParallelTestCase.	Using	this	technique,	we	can	build	up
complex	test	scenarios.

The	following	sections	provide	details	on	each	test	entity	along	with	examples	of	their	use.

Testing	YAML	Blueprints

120



This	guide	describes	how	Brooklyn	entities	can	be	created	using	the	Ansible	infrastructure	management	tool
(ansible.com).	At	present	Brooklyn	provides	basic	support	for	Ansible,	operating	in	a	'masterless'	mode.	Comments	on
this	support	and	suggestions	for	further	development	are	welcome.

This	guide	assumes	you	are	familiar	with	the	basics	of	creating	YAML	blueprints.

Ansible	in	YAML	Blueprints

121

http://ansible.com


This	guide	describes	how	Brooklyn	entities	can	be	easily	created	from	Chef	cookbooks.	As	of	this	writing	(May	2014)
some	of	the	integration	points	are	under	active	development,	and	comments	are	welcome.	A	plan	for	the	full
integration	is	online	here.

This	guide	assumes	you	are	familiar	with	the	basics	of	creating	YAML	blueprints.

Chef	in	YAML	Blueprints

122

https://docs.google.com/a/cloudsoftcorp.com/document/d/18ZwzmncbJgJeQjnSvMapTWg6N526cvGMz5jaqdkxMf8


This	guide	describes	how	Brooklyn	entities	can	be	created	using	the	Salt	infrastructure	management	tool
(saltstack.com).	At	present	Brooklyn	provides	basic	support	for	Salt,	operating	in	a	'masterless'	mode.	Comments	on
this	support	and	suggestions	for	further	development	are	welcome.

This	guide	assumes	you	are	familiar	with	the	basics	of	creating	YAML	blueprints.

Salt	in	YAML	Blueprints

123

https://saltstack.com/


By	this	point	you	should	be	familiar	with	the	fundamental	concepts	behind	both	Apache	Brooklyn	and	YAML
blueprints.	This	section	of	the	documentation	is	intended	to	show	a	complete,	advanced	example	of	a	YAML	blueprint.

The	intention	is	that	this	example	is	used	to	learn	the	more	in-depth	concepts,	and	also	to	serve	as	a	reference	when
writing	your	own	blueprints.	This	page	will	first	explain	what	the	example	application	is	and	how	to	run	it,	then	it	will
spotlight	interesting	features.

Please	note,	there	is	now	a	much	more	up-to-date	ELK	blueprint	that	can	be	found	here.	We've	using	an	older	version
of	this	in	the	tutorial	as	it	highlights	some	key	Brooklyn	concepts.

ELK	Stack	Example

This	example	demonstrates	the	deployment	of	an	ELK	Stack	(Elasticsearch,	Logstash	and	Kibana),	using	the
provided	blueprint	to	deploy,	install,	run	and	manage	all	three.	Briefly,	the	component	parts	are:

Elasticsearch:	A	clustered	search	engine
Logstash:	Collects,	parses	and	stores	logs.	For	our	example	it	will	store	logs	in	Elasticsearch
Kibana:	A	web	front	end	to	Elasticsearch

We	also	deploy	a	simple	webserver	whose	logs	will	be	collected.

Tomcat	8:	Web	server	whose	logs	will	be	stored	in	Elasticsearch	by	Logstash.

For	more	about	the	ELK	stack,	please	see	the	documentation	here.

The	Blueprints

There	are	four	blueprints	that	make	up	this	application.	Each	of	them	are	used	to	add	one	or	more	catalog	items	to
Brooklyn.	You	can	find	them	below:

Elasticsearch
Logstash
Kibana
ELK

Running	the	example

First,	add	all	four	blueprints	to	the	Brooklyn	Catalog.	This	can	be	done	by	clicking	the	'Catalog'	tab,	clicking	the	'+'
symbol	and	pasting	the	YAML.	Once	this	is	done,	click	the	'Application'	tab,	then	the	'+'	button	to	bring	up	the	add
application	wizard.	A	new	Catalog	application	will	be	available	called	'ELK	Stack'.	Using	the	add	application	wizard,
you	should	be	able	to	deploy	an	ELK	stack	to	a	location	of	your	choosing.	Alternatively	use	the		br		Brooklyn
command	line	tool	and	add	the	files	with		br	catalog	add	.

Exploring	the	example

After	the	application	has	been	deployed,	you	can	ensure	it	is	working	as	expected	by	checking	the	following:

There	is	a	Kibana	sensor	called		main.uri	,	the	value	of	which	points	to	the	Kibana	front	end.	You	can	explore
this	front	end,	and	observe	the	logs	stored	in	Elasticsearch.	Many	Brooklyn	applications	have	a		main.uri		set	to
point	you	in	the	right	direction.
You	can	also	use	the	Elasticsearch	REST	API	to	explore	further.	The	Elasticsearch	Cluster	entity	has	a
	urls.http.list		sensor.	Using	a	host:port	from	that	list	you	will	be	able	to	access	the	REST	API.	The	following
URL	will	give	you	the	state	of	the	cluster		http://<host:port>/_cluster/health?pretty=true	.	As	you	can	see	the
	number_of_nodes		is	currently	2,	indicating	that	the	Elasticsearch	nodes	are	communicating	with	each	other.

YAML	Blueprint	Advanced	Example

124

https://github.com/brooklyncentral/brooklyn-elk/
https://www.elastic.co/webinars/introduction-elk-stack


Interesting	Feature	Spotlight

We	will	mainly	focus	on	the	Elasticsearch	blueprint,	and	will	be	clear	when	another	blueprint	is	being	discussed.	This
blueprint	describes	a	cluster	of	Elasticsearch	nodes.

Provisioning	Properties

Our	Elasticsearch	blueprint	has	a	few	requirements	of	the	location	in	which	it	is	run.	Firstly,	it	must	be	run	on	an
Ubuntu	machine	as	the	example	has	been	written	specifically	for	this	OS.	Secondly,	two	ports	must	opened	to	ensure
that	the	entities	can	be	accessed	from	the	outside	world.	Both	of	these	requirements	are	configured	via
	provisioning.properties		as	follows:

brooklyn.config:

		elasticsearch.http.port:	9220

		elasticsearch.tcp.port:	9330

		provisioning.properties:

				osFamily:	ubuntu

				inboundPorts:

				-	$brooklyn:config("elasticsearch.http.port")

				-	$brooklyn:config("elasticsearch.tcp.port")

VanillaSoftwareProcess

When	composing	a	YAML	blueprint,	the	VanillaSoftwareProcess	is	a	very	useful	entity	to	be	aware	of.	A
VanillaSoftwareProcess	will	instruct	Brooklyn	to	provision	an	instance,	and	run	a	series	of	shell	commands	to	setup,
run,	monitor	and	teardown	your	program.	The	commands	are	specified	as	configuration	on	the
VanillaSoftwareProcess	and	there	are	several	available.	We	will	spotlight	a	few	now.	To	simplify	this	blueprint,	we
have	specified	ubuntu	only	installs	so	that	our	commands	can	be	tailored	to	this	system	(e.g.	use	apt-get	rather	than
yum).

Customize	Command

The	Customize	Command	is	run	after	the	application	has	been	installed	but	before	it	is	run.	It	is	the	perfect	place	to
create	and	amend	config	files.	Please	refer	to	the	following	section	of	the	Elasticsearch	blueprint:

customize.command:	|

		sudo	rm	-fr	sudo	tee	/etc/elasticsearch/elasticsearch.yml

		echo	discovery.zen.ping.multicast.enabled:	false	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.yml

		echo	discovery.zen.ping.unicast.enabled:	true	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.yml

		echo	discovery.zen.ping.unicast.hosts:	${URLS_WITH_BRACKETS}	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.y

ml

		echo	http.port:	${ES_HTTP_PORT}	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.yml

		echo	transport.tcp.port:	${ES_TCP_PORT}	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.yml

		echo	network.host:	${IP_ADDRESS}	|	sudo	tee	-a	/etc/elasticsearch/elasticsearch.yml

The	purpose	of	this	section	is	to	create	a	YAML	file	with	all	of	the	required	configuration.	We	use	the	YAML	literal	style
	|		indicator	to	write	a	multi	line	command.	We	start	our	series	of	commands	by	using	the		rm		command	to	remove
the	previous	config	file.	We	then	use		echo		and		tee		to	create	the	new	config	file	and	insert	the	config.	Part	of	the
configuration	is	a	list	of	all	hosts	that	is	set	on	the	parent	entity-	this	is	done	by	using	a	combination	of	the		component	
and		attributeWhenReady		DSL	commands.	More	on	how	this	is	generated	later.

Check	running

After	an	app	is	installed	and	run,	this	command	is	scheduled	to	run	regularly	and	used	to	populate	the		service.isUp	
sensor.	If	this	command	is	not	specified,	or	returns	an	exit	code	of	anything	other	than	zero,	then	Brooklyn	will
assume	that	your	entity	has	failed	and	will	display	the	fire	status	symbol.	Please	refer	to	the	following	section	of	the

YAML	Blueprint	Advanced	Example

125



Elasticsearch	blueprint:

checkRunning.command:	sudo	systemctl	status	kibana.service

There	are	many	different	ways	to	implement	this	command.	For	this	example,	we	are	simply	using	the	systemctl
status	of	the	appropriate	service.

Enrichers

Elasticsearch	URLS

To	ensure	that	all	Elasticsearch	nodes	can	communicate	with	each	other	they	need	to	be	configured	with	the	TCP
URL	of	all	other	nodes.	Similarly,	the	Logstash	instances	need	to	be	configured	with	all	the	HTTP	URLs	of	the
Elasticsearch	nodes.	The	mechanism	for	doing	this	is	the	same,	and	involves	using	Transformers,	Aggregators	and
Joiners,	as	follows:

brooklyn.enrichers:

		-	type:	org.apache.brooklyn.enricher.stock.Transformer

				brooklyn.config:

						enricher.sourceSensor:	$brooklyn:sensor("host.subnet.address")

						enricher.targetSensor:	$brooklyn:sensor("url.tcp")

						enricher.targetValue:	$brooklyn:formatString("%s:%s",	$brooklyn:attributeWhenReady("host.subnet.address")

,	$brooklyn:config("elasticsearch.tcp.port"))

In	this	example,	we	take	the	host.subnet.address	and	append	the	TCP	port,	outputting	the	result	as		url.tcp	.	After
this	has	been	done,	we	now	need	to	collect	all	the	URLs	into	a	list	in	the	Cluster	entity,	as	follows:

brooklyn.enrichers:

		-	type:	org.apache.brooklyn.enricher.stock.Aggregator

				brooklyn.config:

						enricher.sourceSensor:	$brooklyn:sensor("url.tcp")

						enricher.targetSensor:	$brooklyn:sensor("urls.tcp.list")

						enricher.aggregating.fromMembers:	true

In	the	preceding	example,	we	aggregated	all	of	the	TCP	URLs	generated	in	the	early	example.	These	are	then	stored
in	a	sensor	called		urls.tcp.list	.	This	list	is	then	joined	together	into	one	long	string:

-	type:	org.apache.brooklyn.enricher.stock.Joiner

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("urls.tcp.list")

				enricher.targetSensor:	$brooklyn:sensor("urls.tcp.string")

				uniqueTag:	urls.quoted.string

Finally,	the	string	has	brackets	added	to	the	start	and	end:

-	type:	org.apache.brooklyn.enricher.stock.Transformer

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("urls.tcp.string")

				enricher.targetSensor:	$brooklyn:sensor("urls.tcp.withBrackets")

				enricher.targetValue:	$brooklyn:formatString("[%s]",	$brooklyn:attributeWhenReady("urls.tcp.string"))

The	resulting	sensor	will	be	called		urls.tcp.withBrackets		and	will	be	used	by	all	Elasticsearch	nodes	during	setup.

Kibana	URL

YAML	Blueprint	Advanced	Example

126



Kibana	also	needs	to	be	configured	such	that	it	can	access	the	Elasticsearch	cluster.	However,	Kibana	can	only	be
configured	to	point	at	one	Elasticsearch	instance.	To	enable	this,	we	use	another	enricher	in	the	cluster	to	select	the
first	URL	from	the	list,	as	follows:

-	type:	org.apache.brooklyn.enricher.stock.Aggregator

		brooklyn.config:

				enricher.sourceSensor:	$brooklyn:sensor("host.subnet.address")

				enricher.targetSensor:	$brooklyn:sensor("host.address.first")

				enricher.aggregating.fromMembers:	true

				enricher.transformation:

					$brooklyn:object:

							type:	"org.apache.brooklyn.util.collections.CollectionFunctionals$FirstElementFunction"

Similar	to	the	above	Aggregator,	this	Aggregator	collects	all	the	URLs	from	the	members	of	the	cluster.	However,	this
Aggregator	specifies	a	transformation.	In	this	instance	a	transformation	is	a	Java	class	that	implements	a	Guava
Function		<?	super	Collection<?>,	?>>	,	i.e.	a	function	that	takes	in	a	collection	and	returns	something.	In	this	case	we
specify	the	FirstElementFunction	from	the	CollectionFunctionals	to	ensure	that	we	only	get	the	first	member	of	the
URL	list.

Latches

In	the	ELK	blueprint,	there	is	a	good	example	of	a	latch.	Latches	are	used	to	force	an	entity	to	wait	until	certain
conditions	are	met	before	continuing.	For	example:

-	type:	kibana-standalone

		id:	kibana

		name:	Kibana	Server

		latch.customize:	$brooklyn:component("es").attributeWhenReady("service.isUp")

This	latch	is	used	to	stop	Kibana	customizing	until	the	Elasticsearch	cluster	is	up.	We	do	this	to	ensure	that	the	URL
sensors	have	been	setup,	so	that	they	can	be	passed	into	Kibana	during	the	customization	phase.

Latches	can	also	be	used	to	control	how	many	entities	can	execute	the	same	step	at	any	given	moment.	When	a	latch
is	given	the	value	of	a		MaxConcurrencySensor		it	will	unblock	execution	only	when	there	are	available	"slots"	to	execute
(think	of	it	as	a	semaphore).	For	example	to	let	a	single	entity	execute	the	launch	step	of	the	start	effector:

services:

-	type:	cluster

		brooklyn.initializers:

		-	type:	org.apache.brooklyn.core.sensor.MaxConcurrencySensor

				brooklyn.config:

						name:	single-executor

						latch.concurrency.max:	1

		brooklyn.config:	

				initialSize:	10

				memberSpec:

						$brooklyn:entitySpec:

								type:	vanilla-bash-server

								brooklyn.config:

										launch.command:	sleep	2

										checkRunning.command:	true

										latch.launch:	$brooklyn:parent().attributeWhenReady("single-executor")

It's	important	to	note	that	the	above	setup	is	not	reentrant.	This	means	that	users	should	be	careful	to	avoid
deadlocks.	For	example	having	a	start	and	launch	latches	against	the		single-executor		from	above.	The	launch	latch
will	block	forever	since	the	start	latch	already	would've	acquired	the	free	slot.

YAML	Blueprint	Advanced	Example

127



Child	entities

The	ELK	blueprint	also	contains	a	good	example	of	a	child	entity.

-	type:	org.apache.brooklyn.entity.webapp.tomcat.Tomcat8Server

		brooklyn.config:

				children.startable.mode:	background_late

		...

		brooklyn.children:

		-	type:	logstash-child

In	this	example,	a	logstash-child	is	started	as	a	child	of	the	parent	Tomcat	server.	The	Tomcat	server	needs	to	be
configured	with	a		children.startable.mode		to	inform	Brooklyn	when	to	bring	up	the	child.	In	this	case	we	have
selected	background	so	that	the	child	is	disassociated	from	the	parent	entity,	and	late	to	specify	that	the	parent	entity
should	start	before	we	start	the	child.

The	example	also	shows	how	to	configure	Logstash	inputs	and	filters,	if	necessary,	for	a	particular	application,	in	this
case	Tomcat.

-	type:	logstash-child

		name:	Logstash

		brooklyn.config:

				logstash.elasticsearch.hosts:	$brooklyn:entity("es").attributeWhenReady("urls.http.withBrackets")

				logstash.config.input:

						$brooklyn:formatString:

						-	|

								input	{

										file	{

												path	=>	"%s/logs/localhost_access_log.*"

												start_position	=>	"beginning"

										}

								}

						-	$brooklyn:entity("tomcat").attributeWhenReady("run.dir")

				logstash.config.filter:	|

						filter	{

								grok	{

										match	=>	{	"message"	=>	"%{COMBINEDAPACHELOG}"	}

								}

								date	{

										match	=>	[	"timestamp"	,	"dd/MMM/yyyy:HH:mm:ss	Z"	]

								}

						}

Configuring	an	appropriate	visualisation	on	the	Kibana	server	(access	it	via	the	URL	on	the	summary	tab	for	that
entity)	allows	a	dashboard	to	be	created	such	as

YAML	Blueprint	Advanced	Example

128



YAML	Blueprint	Advanced	Example

129



YAML	Recommended
The	recommended	way	to	write	a	blueprint	is	as	a	YAML	file.	This	is	true	both	for	building	an	application	out	of
existing	blueprints,	and	for	building	new	integrations.

The	use	of	Java	is	reserved	for	those	use-cases	where	the	provisioning	or	configuration	logic	is	very	complicated.

Be	Familiar	with	Brooklyn
Be	familiar	with	the	stock	entities	available	in	Brooklyn.	For	example,	prove	you	understand
the	concepts	by	making	a	deployment	of	a	cluster	of	Tomcat	servers	before	you	begin	writing	your	own	blueprints.

Ask	For	Help
Ask	for	help	early.	The	community	is	keen	to	help,	and	also	keen	to	find	out	what	people	find	hard	and	how	people
use	the	product.	Such	feedback	is	invaluable	for	improving	future	versions.

Faster	Dev-Test
Writing	a	blueprint	is	most	efficient	and	simple	when	testing	is	fast,	and	when	testing	is	done	incrementally	as	features
of	the	blueprint	are	written.

The	slowest	stages	of	deploying	a	blueprint	are	usually	VM	provisioning	and	downloading/installing	of	artifacts	(e.g.
RPMs,	zip	files,	etc).

Options	for	speeding	up	provisioning	include	those	below.

Deploying	to	Bring	Your	Own	Nodes	(BYON)

A	BYON	location	can	be	defined,	which	avoids	the	time	required	to	provision	VMs.	This	is	fast,	but	has	the	downside
that	artifacts	installed	during	a	previous	run	can	interfere	with	subsequent	runs.

A	variant	of	this	is	to	use	Vagrant	(e.g.	with	VirtualBox)	to	create	VMs	on	your	local	machine,	and	to	use	these	as	the
target	for	a	BYON	location.

These	VMs	should	mirror	the	target	environment	as	much	as	possible.

Deploying	to	the	"localhost"	location

This	is	fast	and	simple,	but	has	some	obvious	downsides:

Artifacts	are	installed	directly	on	your	desktop/server.

The	artifacts	installed	during	previous	runs	can	interfere	with	subsequent	runs.

Some	entities	require		sudo		rights,	which	must	be	granted	to	the	user	running	Brooklyn.

Deploying	to	Clocker

Docker	containers	provide	a	convenient	way	to	test	blueprints	(and	also	to	run	blueprints	in	production!).

Blueprinting	Tips

130



The	Clocker	project	allows	the	simple	setup	of	Docker	Engine(s),	and	for	Docker	containers	to	be	used	instead	of
VMs.	For	testing,	this	allows	each	run	to	start	from	a	fresh	container	(i.e.	no	install	artifacts	from	previous	runs),	while
taking	advantage	of	the	speed	of	starting	containers.

Local	Repository	of	Install	Artifacts

To	avoid	re-downloading	install	artifacts	on	every	run,	these	can	be	saved	to		~/.brooklyn/repository/	.	The	file
structure	is	a	sub-directory	with	the	entity's	simple	name,	then	a	sub-directory	with	the	version	number,	and	then	the
files	to	be	downloaded.	For	example,		~/.brooklyn/repository/TomcatServer/7.0.56/apache-tomcat-7.0.56.tar.gz	.

If	possible,	synchronise	this	directory	with	your	test	VMs.

Re-install	on	BYON

If	using	BYON	or	localhost,	the	install	artifacts	will	by	default	be	installed	to	a	directory	like		/tmp/brooklyn-
myname/installs/	.	If	install	completed	successfully,	then	the	install	stage	will	be	subsequently	skipped	(a	marker	file
being	used	to	indicate	completion).	To	re-test	the	install	phase,	delete	the	install	directory	(e.g.	delete		/tmp/brooklyn-
myname/installs/TomcatServer_7.0.56/	).

Where	installation	used	something	like		apt-get	install		or		yum	install	,	then	re-testing	the	install	phase	will	require
uninstalling	these	artifacts	manually.

Monitoring	and	Managing	Applications
Think	about	what	it	really	means	for	an	application	to	be	running.	The	out-of-the-box	default	for	a	software	process	is
the	lowest	common	denominator:	that	the	process	is	still	running.	Consider	checking	that	the	app	responds	over
HTTP	etc.

If	you	have	control	of	the	app	code,	then	consider	adding	an	explicit	health	check	URL	that	does	more	than	basic
connectivity	tests.	For	example,	can	it	reach	the	database,	message	broker,	and	other	components	that	it	will	need	for
different	operations.

Writing	Composite	Blueprints
Write	everything	in	discrete	chunks	that	can	be	composed	into	larger	pieces.	Do	not	write	a	single	mega-blueprint.	For
example,	ensure	each	component	is	added	to	the	catalog	independently,	along	with	a	blueprint	for	the	composite	app.

Experiment	with	lots	of	small	blueprints	to	test	independent	areas	before	combining	them	into	the	real	thing.

Writing	Entity	Tests
Use	the	test	framework	to	write	test	cases.	This	will	make	automated	(regression)	testing	easier,	and	will	allow	others
to	easily	confirm	that	the	entity	works	in	their	environment.

If	using	Maven/Gradle	then	use	the	Brooklyn	Maven	plugin	to	test	blueprints	at	build	time.

Custom	Entity	Development
If	writing	a	custom	integration,	the	following	recommendations	may	be	useful:

Always	be	comfortable	installing	and	running	the	process	yourself	before	attempting	to	automate	it.

Blueprinting	Tips

131

http://www.clocker.io
https://github.com/brooklyncentral/brooklyn-maven-plugin


For	the	software	to	be	installed,	use	its	Installation	and	Admin	guides	to	ensure	best	practices	are	being	followed.
Use	blogs	and	advice	from	experts,	when	available.

Where	there	is	a	choice	of	installation	approaches,	use	the	approach	that	is	most	appropriate	for	production	use-
cases	(even	if	this	is	harder	to	test	on	locahost).	For	example,	prefer	the	use	of	RPMs	versus	unpacking	zip	files,
and	prefer	the	use	of	services	versus	invoking	a		bin/start		script.

Ensure	every	step	is	scriptable	(e.g.	manual	install	does	not	involve	using	a	text	editor	to	modify	configuration
files,	or	clicking	on	things	in	a	web-console).

Write	scripts	(or	Chef	recipes,	or	Puppet	manifests,	etc),	and	test	these	by	executing	manually.	Only	once	these
work	in	isolation,	add	them	to	the	entity	blueprint.

Externalise	the	configuration	where	appropriate.	For	example,	if	there	is	a	configuration	file	then	include	a	config
key	for	the	URL	of	the	configuration	file	to	use.	Consider	using	FreeMarker	templating	for	such	configuration	files.

Focus	on	a	single	OS	distro/version	first,	and	clearly	document	these	assumptions.

Breakdown	the	integration	into	separate	components,	where	possible	(and	thus	develop/test	them	separately).
For	example,	if	deploying	a	MongoDB	cluster	then	first	focus	on	single-node	MongoDB,	and	then	make	that
configurable	and	composable	for	a	cluster.

Where	appropriate,	share	the	new	entity	with	the	Brooklyn	community	so	that	it	can	be	reviewed,	tested	and
improved	by	others	in	the	community!

Cloud	Portability
You	get	a	lot	of	support	out-of-the-box	for	deploying	blueprints	to	different	clouds.	The	points	below	may	also	be	of
help:

Test	(and	regression	test)	on	each	target	cloud.

Be	aware	that	images	on	different	clouds	can	be	very	different.	For	example,	two	CentOS	6.6	VMs	might	have
different	pre-installed	libraries,	different	default	iptables	or	SE	Linux	settings,	different	repos,	different	sudo
configuration,	etc.

Different	clouds	handle	private	and	public	IPs	differently.	One	must	be	careful	about	which	address	to	advertise	to
for	use	by	other	entities.

VMs	on	some	clouds	may	not	have	a	well-configured	hostname	(e.g.		ping	$(hostname)		can	fail).

VMs	in	different	clouds	have	a	different	number	of	NICs.	This	is	important	when	choosing	whether	to	listen	on
0.0.0.0	or	on	a	specific	NIC.

Investigating	Errors
ALWAYS	keep	logs	when	there	is	an	error.

See	the	Troubleshooting	guide	for	more	information.

Blueprinting	Tips

132



Locations	are	the	environments	to	which	Brooklyn	deploys	applications.	Most	commonly	these	are	cloud	services
such	as	AWS,	GCE,	and	IBM	Softlayer.	Brooklyn	also	supports	deploying	to	a	pre-provisioned	network	or	to	localhost
(primarily	useful	for	testing	blueprints).

See	also:

The	Locations	yaml	guide
Use	within	an	entity	of	the	configuration	option	provisioning.properties
How	to	add	location	definitions	to	the	Catalog;	and
How	to	use	Externalized	Configuration.

The	requirements	for	how	a	provisioned	machine	should	behave	will	depend	on	the	entites	subsequently	deployed
there.

Below	are	a	set	of	common	assumptions,	made	by	many	entity	implementations,	which	could	cause	subsequent
errors	if	they	do	not	hold.	These	relate	to	the	machine's	configuration,	rather	than	additional	networking	or	security
that	a	given	Cloud	might	offer.

Also	see	the	Troubleshooting	docs.

Remote	Access

SSH	or	WinRM	Access

Many	entities	require	ssh'ing	(or	using	WinRM	for	Windows),	to	install	and	configure	the	software.

An	example	of	disabling	all	ssh'ing	is	shown	below:

location:

		aws-ec2:us-east-1:

				identity:	XXXXXXXX

				credential:	XXXXXXXX

				waitForSshable:	false

				pollForFirstReachableAddress:	false

services:

-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

		brooklyn.config:

				onbox.base.dir.skipResolution:	true

				sshMonitoring.enabled:	false

Parsing	SSH	stdout:	No	Extra	Lines

For	entities	that	execute	ssh	commands,	these	sometimes	parse	the	resulting	stdout.

It	is	strongly	recommended	that	VMs	are	configured	so	that	no	additional	stdout	is	written	when	executing	remote	ssh
(or	WinRM)	commands.	Such	stdout	risks	interfering	with	the	response	parsing	in	some	blueprints.

For	example,	if	configuring	the	VM	to	write	out	"Last	login"	information,	this	should	be	done	for	only	"interactive"	shells
(see	Stackoverflow	for	more	details).

Passwordless	Sudo

Does	passwordless	sudo	work?

Try	executing:

sudo	whoami

Deploying	Blueprint

133

http://stackoverflow.com/a/415444/1393883


See	Passwordless	Sudo.

Advertised	Addresses

Hostname	Resolves	Locally

Does	the	hostname	known	at	the	box	resolve	at	the	box?

Try	executing:

ping	$(hostname)

if	not,	consider	setting		generate.hostname:	true		in	the	location	config,	for	jclouds-based	locations.

IP	Resolves	Locally

For	the	IP	address	advertised	in	Brooklyn	using	the	sensor		host.addresses.private		(or		host.subnet.address	),	can
the	machine	reach	that	IP?

Get	the	sensor	value,	and	then	try	executing:

ping	${PRIVATE_IP}

Is	there	a	public	IP	(advertised	using	the	sensor		host.addresses.public	,	or		host.address	),	and	can	the	machine
reach	it?

Get	the	sensor	value,	and	then	try	executing:

ping	${PUBLIC_IP}

Networking

Public	Internet	Access

Can	the	machine	reach	the	public	internet,	and	does	DNS	resolve?

Try	executing:

ping	www.example.org

Machine's	Hostname	in	DNS

Is	the	machine	hostname	well-known?	If	ones	does	a	DNS	lookup,	e.g.	from	the	Brooklyn	server,	does	it	resolve	and
does	it	return	the	expected	IP	(e.g.	the	same	IP	as	the		host.addresses.public		sensor)?	Try	using	the	hostname	that
the	machine	reports	when	you	execute		hostname	.

Many	blueprints	do	not	require	this,	instead	using	IP	addresses	directly.	Some	blueprints	may	include	registration	with
an	appropriate	DNS	server.	Some	clouds	do	this	automatically.

Reachability

When	provisioning	two	machines,	can	these	two	machines	reach	each	other	on	the	expected	IP(s)	and	hostname(s)?

Deploying	Blueprint

134



Try	using		ping		from	one	machine	to	another	using	the	public	or	subnet	ip	or	hostname.	However,	note	that		ping	
requires	access	over	ICMP,	which	may	be	disabled.	Alternatively,	try	connecting	to	a	specific	TCP	port	using		telnet
<address>	<port>	.

Firewalls

What	firewall(s)	are	running	on	the	machine,	and	are	the	required	ports	open?	On	linux,	check	things	like		iptables	,
	firewalld	,		ufw		or	other	commercial	firewalls.	On	Windows,	check	the	settings	of	the	Windows	Firewall.

Consider	using		openIptables:	true	,	or	even		stopIptables:	true	.

Sufficient	Entropy	for	/dev/random
Is	there	sufficient	entropy	on	the	machine,	for		/dev/random		to	respond	quickly?

Try	executing:

{	cat	/dev/random	>	/tmp/x	&	}	;	sleep	10	;	kill	%1	;	{	cat	/dev/random	>	/tmp/x	&	}	;	sleep	1	;	kill	%1	;	wc	/

tmp/x	|	awk	'{print	$3}'

The	result	should	be	more	than	1M.

If	not,	consider	setting		installDevUrandom:	true		for	jclouds-based	locations.

See	instructions	to	Increase	Entropy.

File	System

Permissions	of	/tmp

Is		/tmp		writable?

Try	executing:

touch	/tmp/amp-test-file	;	rm	/tmp/amp-test-file

Are	files	in		/tmp		executable	(e.g.	some	places	it	has	been	mounted	NO_EXECUTE)?

Try	executing:

echo	date	>	/tmp/brooklyn-test.sh	&&	chmod	+x	/tmp/brooklyn-test.sh	&&	/tmp/brooklyn-test.sh	&&	rm	/tmp/brookly

n-test.sh

section:	Clouds	section_type:	inline

section_position:	1

Clouds

For	most	cloud	provisioning	tasks,	Brooklyn	uses	Apache	jclouds.	The	identifiers	for	some	of	the	most	commonly	used
jclouds-supported	clouds	are	(or	see	the	full	list):

Deploying	Blueprint

135

https://en.wikipedia.org/wiki/Windows_Firewall
http://jclouds.org
http://jclouds.apache.org/reference/providers/


	jclouds:aws-ec2:<region>	:	Amazon	EC2,	where		:<region>		might	be		us-east-1		or		eu-west-1		(or	omitted)
	jclouds:softlayer:<region>	:	IBM	Softlayer,	where		:<region>		might	be		dal05		or		ams01		(or	omitted)
	jclouds:google-compute-engine	:	Google	Compute	Engine
	jclouds:openstack-nova:<endpoint>	:	OpenStack,	where		:<endpoint>		is	the	access	URL	(required)
	jclouds:cloudstack:<endpoint>	:	Apache	CloudStack,	where		:<endpoint>		is	the	access	URL	(required)

For	any	of	these,	of	course,	Brooklyn	needs	to	be	configured	with	an		identity		and	a		credential	:

location:

		jclouds:aws-ec2:

				identity:	ABCDEFGHIJKLMNOPQRST

				credential:	s3cr3tsq1rr3ls3cr3tsq1rr3ls3cr3tsq1rr3l

The	above	YAML	can	be	embedded	directly	in	blueprints,	either	at	the	root	or	on	individual	services.	If	you	prefer	to
keep	the	credentials	separate,	you	can	instead	store	them	as	a	catalog	entry	or	set	them	in		brooklyn.properties		in
the		jclouds.<provider>		namespace:

brooklyn.location.jclouds.aws-ec2.identity=ABCDEFGHIJKLMNOPQRST		

brooklyn.location.jclouds.aws-ec2.credential=s3cr3tsq1rr3ls3cr3tsq1rr3ls3cr3tsq1rr3l

And	in	this	case	you	can	reference	the	location	in	YAML	with		location:	jclouds:aws-ec2	.

Alternatively,	you	can	use	the	location	wizard	tool	available	within	the	web	console	to	create	any	cloud	location
supported	by	Apache	jclouds.	This	location	will	be	saved	as	a	catalog	entry	for	easy	reusability.

Brooklyn	irons	out	many	of	the	differences	between	clouds	so	that	blueprints	run	similarly	in	a	wide	range	of	locations,
including	setting	up	access	and	configuring	images	and	machine	specs.	The	configuration	options	are	described	in
more	detail	below.

In	some	cases,	cloud	providers	have	special	features	or	unusual	requirements.	These	are	outlined	in	More	Details
for	Specific	Clouds.

OS	Initial	Login	and	Setup

Once	a	machine	is	provisioned,	Brooklyn	will	normally	attempt	to	log	in	via	SSH	and	configure	the	machine	sensibly.

The	credentials	for	the	initial	OS	log	on	are	typically	discovered	from	the	cloud,	but	in	some	environments	this	is	not
possible.	The	keys		loginUser		and	either		loginUser.password		or		loginUser.privateKeyFile		can	be	used	to	force
Brooklyn	to	use	specific	credentials	for	the	initial	login	to	a	cloud-provisioned	machine.

(This	custom	login	is	particularly	useful	when	using	a	custom	image	templates	where	the	cloud-side	account
management	logic	is	not	enabled.	For	example,	a	vCloud	(vCD)	template	can	have	guest	customization	that	will
change	the	root	password.	This	setting	tells	Apache	Brooklyn	to	only	use	the	given	password,	rather	than	the	initial
randomly	generated	password	that	vCD	returns.	Without	this	property,	there	is	a	race	for	such	templates:	does
Brooklyn	manage	to	create	the	admin	user	before	the	guest	customization	changes	the	login	and	reboots,	or	is	the
password	reset	first	(the	latter	means	Brooklyn	can	never	ssh	to	the	VM).	With	this	property,	Brooklyn	will	always	wait
for	guest	customization	to	complete	before	it	is	able	to	ssh	at	all.	In	such	cases,	it	is	also	recommended	to	use
	useJcloudsSshInit=false	.)

Following	a	successful	logon,	Brooklyn	performs	the	following	steps	to	configure	the	machine:

1.	 creates	a	new	user	with	the	same	name	as	the	user		brooklyn		is	running	as	locally	(this	can	be	overridden	with
	user	,	below).

Deploying	Blueprint

136

http://jclouds.org


2.	 install	the	local	user's		~/.ssh/id_rsa.pub		as	an		authorized_keys		on	the	new	machine,	to	make	it	easy	for	the
operator	to		ssh		in	(override	with		privateKeyFile	;	or	if	there	is	no		id_{r,d}sa{,.pub}		an	ad	hoc	keypair	will	be
generated	for	the	regular	Brooklyn	user;	if	there	is	a	passphrase	on	the	key,	this	must	be	supplied)

3.	 give		sudo		access	to	the	newly	created	user	(override	with		grantUserSudo:	false	)

4.	 disable	direct		root		login	to	the	machine

These	steps	can	be	skipped	or	customized	as	described	below.

jclouds	Config	Keys

The	following	is	a	subset	of	the	most	commonly	used	configuration	keys	used	to	customize	cloud	provisioning.	For
more	keys	and	more	detail	on	the	keys	below,	see	JcloudsLocationConfig.

VM	Creation

Most	providers	require	exactly	one	of	either		region		(e.g.		us-east-1	)	or		endpoint		(the	URL,	usually	for	private
cloud	deployments)

Hardware	requirements	can	be	specified,	including		minRam	,		minCores	,		minDisk		and		os64Bit	;	or	as	a	specific
	hardwareId	

VM	image	constraints	can	be	set	using		osFamily		(e.g.		Ubuntu	,		CentOS	,		Debian	,		RHEL	)	and		osVersionRegex	,
or	specific	VM	images	can	be	specified	using		imageId		or		imageNameRegex	

Specific	VM	images	can	be	specified	using		imageId		or		imageNameRegex	

Specific	Security	Groups	can	be	specified	using		securityGroups	,	as	a	list	of	strings	(the	existing	security	group
names),	or		inboundPorts		can	be	set,	as	a	list	of	numeric	ports	(selected	clouds	only)

Where	a	key	pair	is	registered	with	a	target	cloud	for	logging	in	to	machines,	Brooklyn	can	be	configured	to
request	this	when	provisioning	VMs	by	setting		keyPair		(selected	clouds	only).	Note	that	if	this		keyPair		does	not
correspond	your	default		~/.ssh/id_rsa	,	you	must	typically	also	specify	the	corresponding
	loginUser.privateKeyFile		as	a	file	or	URL	accessible	from	Brooklyn.

A	specific	VM	name	(often	the	hostname)	base	to	be	used	can	be	specified	by	setting		groupId	.	By	default,	this
name	is	constructed	based	on	the	entity	which	is	creating	it,	including	the	ID	of	the	app	and	of	the	entity.	(As
many	cloud	portals	let	you	filter	views,	this	can	help	find	a	specific	entity	or	all	machines	for	a	given	application.)
For	more	sophisticated	control	over	host	naming,	you	can	supply	a	custom	CloudMachineNamer,	for	example
	cloudMachineNamer:	CustomMachineNamer	.	CustomMachineNamer	will	use	the	entity's	name	or	following	a	template
you	supply.	On	many	clouds,	a	random	suffix	will	be	appended	to	help	guarantee	uniqueness;	this	can	be
removed	by	setting		vmNameSaltLength:	0		(selected	clouds	only).

A	DNS	domain	name	where	this	host	should	be	placed	can	be	specified	with		domainName		(in	selected	clouds
only)

User	metadata	can	be	attached	using	the	syntax		userMetadata:	{	key:	value,	key2:	"value	2"	}		(or
	userMetadata=key=value,key2="value	2"		in	a	properties	file)

By	default,	several	pieces	of	user	metadata	are	set	to	correlate	VMs	with	Brooklyn	entities,	prefixed	with
	brooklyn-	.	This	user	metadata	can	be	omitted	by	setting		includeBrooklynUserMetadata:	false	.

You	can	specify	the	number	of	attempts	Brooklyn	should	make	to	create	machines	with		machineCreateAttempts	
(jclouds	only).	This	is	useful	as	an	efficient	low-level	fix	for	those	occasions	when	cloud	providers	give	machines
that	are	dead	on	arrival.	You	can	of	course	also	resolve	it	at	a	higher	level	with	a	policy	such	as	ServiceRestarter.

Deploying	Blueprint

137

https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/location/jclouds/JcloudsLocationConfig.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/location/cloud/names/CloudMachineNamer.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/core/location/cloud/names/CustomMachineNamer.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/policy/ha/ServiceRestarter.html


If	you	want	to	investigate	failures,	set		destroyOnFailure:	false		to	keep	failed	VM's	around.	(You'll	have	to
manually	clean	them	up.)	The	default	is	false:	if	a	VM	fails	to	start,	or	is	never	ssh'able,	then	the	VM	will	be
terminated.

You	can	set		useMachinePublicAddressAsPrivateAddress		to	true	to	overwrite	the	VMs	private	IP	with	its	public	IP.
This	is	useful	as	it	can	be	difficult	to	get	VMs	communicating	via	the	private	IPs	they	are	assigned	in	some
clouds.	Using	this	config,	blueprints	which	use	private	IPs	can	still	be	deployed	to	these	clouds.

OS	Setup

	user		and		password		can	be	used	to	configure	the	operating	user	created	on	cloud-provisioned	machines

The		loginUser		config	key	(and	subkeys)	control	the	initial	user	to	log	in	as,	in	cases	where	this	cannot	be
discovered	from	the	cloud	provider

Private	keys	can	be	specified	using		privateKeyFile	;	these	are	not	copied	to	provisioned	machines,	but	are
required	if	using	a	local	public	key	or	a	pre-defined		authorized_keys		on	the	server.	(For	more	information	on	SSH
keys,	see	here.)

If	there	is	a	passphrase	on	the	key	file	being	used,	you	must	supply	it	to	Brooklyn	for	it	to	work,	of	course!
	privateKeyPassphrase		does	the	trick	(as	in		brooklyn.location.jclouds.privateKeyPassphrase	,	or	other	places
where		privateKeyFile		is	valid).	If	you	don't	like	keys,	you	can	just	use	a	plain	old		password	.

Public	keys	can	be	specified	using		publicKeyFile	,	although	these	can	usually	be	omitted	if	they	follow	the
common	pattern	of	being	the	private	key	file	with	the	suffix		.pub		appended.	(It	is	useful	in	the	case	of
	loginUser.publicKeyFile	,	where	you	shouldn't	need,	or	might	not	even	have,	the	private	key	of	the		root		user
when	you	log	in.)

Provide	a	list	of	URLs	to	public	keys	in		extraSshPublicKeyUrls	,	or	the	data	of	one	key	in		extraSshPublicKeyData	,
to	have	additional	public	keys	added	to	the		authorized_keys		file	for	logging	in.	(This	is	supported	in	most	but	not
all	locations.)

Use		dontCreateUser		to	have	Brooklyn	run	as	the	initial		loginUser		(usually		root	),	without	creating	any	other
user.

A	post-provisioning		setup.script		can	be	specified	to	run	an	additional	script,	before	making	the		Location	
available	to	entities.	This	may	take	the	form	of	a	URL	of	a	script	or	a	data	URI.	Note	that	if	using	a	data	URI	it	is
usually	a	good	idea	to	base64	this	string	to	escape	problem	characters	in	more	complex	scripts.	The	base64
encoded	script	should	then	be	prefixed	with		data:text/plain;base64,		to	denote	this.	For	example	if	you	wanted
to	disable	a	yum	repository	called		reponame		prior	to	using	the	machine,	you	could	use	the	following	command:

	sudo	yum-config-manager	--disable	reponame	

Base64	encoding	can	be	done	with	a	with	a	tool	such	as	this	or	a	linux	command	such	as:

	echo	"sudo	yum-config-manager	--disable	reponame"	|	base64	

With	the	base64	prefix	this	would	then	look	like	this:

	setup.script:	data:text/plain;base64,c3VkbyB5dW0tY29uZmlnLW1hbmFnZXIgLS1kaXNhYmxlIHJlcG9uYW1l	

The		setup.script		can	also	take	FreeMarker	variables	in	a		setup.script.vars		property.	Variables	are	set	in	the
format		key1:value1,key2:value2		and	used	in	the	form		${key1}	.	So	for	the	above	example:

	setup.script.vars:	repository:reponame	

then

	setup.script:	data:sudo	yum-config-manager	--disable	${repository}	

or	encoded	in	base64:

Deploying	Blueprint

138

https://en.wikipedia.org/wiki/Data_URI_scheme
https://en.wikipedia.org/wiki/Base64
https://www.base64encode.org/
http://freemarker.org/


	setup.script:	data:text/plain;base64,c3VkbyB5dW0tY29uZmlnLW1hbmFnZXIgLS1kaXNhYmxlICR7cmVwb3NpdG9yeX0=	

This	enables	the	name	of	the	repository	to	be	passed	in	to	the	script.

Use		openIptables:	true		to	automatically	configure		iptables	,	to	open	the	TCP	ports	required	by	the	software
process.	One	can	alternatively	use		stopIptables:	true		to	entirely	stop	the	iptables	service.

Use	Entity	configuration	flag		effector.add.openInboundPorts:	true		to	add	an	effector	for	opening	ports	in	a	cloud
Security	Group.	The	config	is	supported	for	all	SoftwareProcessImpl	implementations.

Use		installDevUrandom:	true		to	fall	back	to	using		/dev/urandom		rather	than		/dev/random	.	This	setting	is	useful
for	cloud	VMs	where	there	is	not	enough	random	entropy,	which	can	cause		/dev/random		to	be	extremely	slow
(causing		ssh		to	be	extremely	slow	to	respond).

Use		useJcloudsSshInit:	false		to	disable	the	use	of	the	native	jclouds	support	for	initial	commands	executed	on
the	VM	(e.g.	for	creating	new	users,	setting	root	passwords,	etc.).	Instead,	Brooklyn's	ssh	support	will	be	used.
Timeouts	and	retries	are	more	configurable	within	Brooklyn	itself.	Therefore	this	option	is	particularly
recommended	when	the	VM	startup	is	unusual	(for	example,	if	guest	customizations	will	cause	reboots	and/or	will
change	login	credentials).

Use		brooklyn.ssh.config.noDeleteAfterExec:	true		to	keep	scripts	on	the	server	after	execution.	The	contents	of
the	scripts	and	the	stdout/stderr	of	their	execution	are	available	in	the	Brooklyn	web	console,	but	sometimes	it
can	also	be	useful	to	have	them	on	the	box.	This	setting	prevents	scripts	executed	on	the	VMs	from	being	deleted
on	completion.	Note	that	some	scripts	run	periodically	so	this	can	eventually	fill	a	disk;	it	should	only	be	used	for
dev/test.

Custom	Template	Options

jclouds	supports	many	additional	options	for	configuring	how	a	virtual	machine	is	created	and	deployed,	many	of
which	are	for	cloud-specific	features	and	enhancements.	Brooklyn	supports	some	of	these,	but	if	what	you	are	looking
for	is	not	supported	directly	by	Brooklyn,	we	instead	offer	a	mechanism	to	set	any	parameter	that	is	supported	by	the
jclouds	template	options	for	your	cloud.

Part	of	the	process	for	creating	a	virtual	machine	is	the	creation	of	a	jclouds		TemplateOptions		object.	jclouds	providers
extends	this	with	extra	options	for	each	cloud	-	so	when	using	the	AWS	provider,	the	object	will	be	of	type
	AWSEC2TemplateOptions	.	By	examining	the	source	code,	you	can	see	all	of	the	options	available	to	you.

The		templateOptions		config	key	takes	a	map.	The	keys	to	the	map	are	method	names,	and	Brooklyn	will	find	the
method	on	the		TemplateOptions		instance;	it	then	invokes	the	method	with	arguments	taken	from	the	map	value.	If	a
method	takes	a	single	parameter,	then	simply	give	the	argument	as	the	value	of	the	key;	if	the	method	takes	multiple
parameters,	the	value	of	the	key	should	be	an	array,	containing	the	argument	for	each	parameter.

For	example,	here	is	a	complete	blueprint	that	sets	some	AWS	EC2	specific	options:

location:	AWS_eu-west-1

services:

-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

		provisioning.properties:

				templateOptions:

						subnetId:	subnet-041c8373

						mapNewVolumeToDeviceName:	["/dev/sda1",	100,	true]

						securityGroupIds:	['sg-4db68928']

Here	you	can	see	that	we	set	three	template	options:

	subnetId		is	an	example	of	a	single	parameter	method.	Brooklyn	will	effectively	try	to	run	the	statement
	templateOptions.subnetId("subnet-041c88373");	

	mapNewVolumeToDeviceName		is	an	example	of	a	multiple	parameter	method,	so	the	value	of	the	key	is	an	array.

Deploying	Blueprint

139

https://jclouds.apache.org/reference/javadoc/2.0.x/org/jclouds/aws/ec2/compute/AWSEC2TemplateOptions.html


Brooklyn	will	effectively	true	to	run	the	statement		templateOptions.mapNewVolumeToDeviceName("/dev/sda1",	100,
true);	

	securityGroupIds		demonstrates	an	ambiguity	between	the	two	types;	Brooklyn	will	first	try	to	parse	the	value	as
a	multiple	parameter	method,	but	there	is	no	method	that	matches	this	parameter.	In	this	case,	Brooklyn	will	next
try	to	parse	the	value	as	a	single	parameter	method	which	takes	a	parameter	of	type		List	;	such	a	method	does
exist	so	the	operation	will	succeed.

If	the	method	call	cannot	be	matched	to	the	template	options	available	-	for	example	if	you	are	trying	to	set	an	AWS
EC2	specific	option	but	your	location	is	an	OpenStack	cloud	-	then	a	warning	is	logged	and	the	option	is	ignored.

Cloud	Machine	Naming

The	name	that	Apache	Brooklyn	generates	for	your	virtual	machine	will,	by	default,	be	based	on	your	Apache
Brooklyn	server	name	and	the	IDs	of	the	entities	involved.	This	is	the	name	you	see	in	places	such	as	the	AWS
console	and	will	look	something	like:

brooklyn-o8jql4-machinename-rkix-tomcat-wi-nca6-14b

If	you	have	created	a	lot	of	virtual	machines,	this	kind	of	naming	may	not	be	helpful.	This	can	be	changed	using	the
following	YAML	in	your	location's		brooklyn.config	:

cloudMachineNamer:	org.apache.brooklyn.core.location.cloud.names.CustomMachineNamer

custom.machine.namer.machine:	My-Custom-Name-${entity.displayName}

A	FreeMarker	format	is	used	in		custom.machine.namer.machine		which	can	take	values	from	places	such	as	the
launching	entity	or	location.

The	above	example	will	create	a	name	such	as:

My-Custom-Name-Tomcat

Allowing	you	to	more	easily	identify	your	virtual	machines.

More	Details	on	Specific	Clouds

Clouds	vary	in	the	format	of	the	identity,	credential,	endpoint,	and	region.	Some	also	have	their	own	idiosyncracies.
More	details	for	configuring	some	common	clouds	is	included	below.	You	may	also	find	these	sources	helpful:

The	template	brooklyn.properties	file	in	the	Getting	Started	guide	contains	numerous	examples	of	configuring
specific	clouds,	including	the	format	of	credentials	and	options	for	sometimes-fiddly	private	clouds.
The	jclouds	guides	describes	low-level	configuration	sometimes	required	for	various	clouds.

section:	Amazon	Web	Services	(AWS)	title:	Amazon	Web	Services	section_type:	inline

section_position:	2

Amazon	Web	Services	(AWS)

Credentials

Deploying	Blueprint

140

http://freemarker.org/
https://jclouds.apache.org/guides


AWS	has	an	"access	key"	and	a	"secret	key",	which	correspond	to	Brooklyn's	identity	and	credential	respectively.

These	keys	are	the	way	for	any	programmatic	mechanism	to	access	the	AWS	API.

To	generate	an	access	key	and	a	secret	key,	see	jclouds	instructions	and	AWS	IAM	instructions.

An	example	of	the	expected	format	is	shown	below:

location:

		jclouds:aws-ec2:

				region:	us-east-1

				identity:	ABCDEFGHIJKLMNOPQRST

				credential:	abcdefghijklmnopqrstu+vwxyzabcdefghijklm

Users	are	strongly	recommended	to	use	externalized	configuration	for	better	credential	management,	for	example
using	Vault.

Common	Configuration	Options

Below	are	examples	of	configuration	options	that	use	values	specific	to	AWS	EC2:

The		region		is	the	AWS	region	code.	For	example,		region:	us-east-1	.	You	can	in-line	the	region	name	using
the	following	format:		jclouds:aws-ec2:us-east-1	.	A	specific	availability	zone	within	the	region	can	be	specified	by
including	its	letter	identifier	as	a	suffix.	For	example,		region:	us-east-1a	.

The		hardwareId		is	the	instance	type.	For	example,		hardwareId:	m4.large	.

The		imageId		is	the	region-specific	AMI	id.	For	example,		imageId:	us-east-1/ami-05ebd06c	.

The		securityGroups		option	takes	one	or	more	names	of	pre-existing	security	groups.	For	example,
	securityGroups:	mygroup1		or		securityGroups:	[	mygroup1,	mygroup2	]	.

Using	Subnets	and	Security	Groups

Apache	Brooklyn	can	run	with	AWS	VPC	and	both	public	and	private	subnets.	Simply	provide	the		subnet-a1b2c3d4		as
the		networkName		when	deploying:

location:

		jclouds:aws-ec2:

				region:	us-west-1

				networkName:	subnet-a1b2c3d4			#	use	your	subnet	ID

Subnets	are	typically	used	in	conjunction	with	security	groups.	Brooklyn	does	not	attempt	to	open	additional	ports
when	private	subnets	or	security	groups	are	supplied,	so	the	subnet	and	ports	must	be	configured	appropriately	for
the	blueprints	being	deployed.	You	can	configure	a	default	security	group	with	appropriate	(or	all)	ports	opened	for
access	from	the	appropriate	(or	all)	CIDRs	and	security	groups,	or	you	can	define	specific		securityGroups		on	the
location	or	as		provisioning.properties		on	the	entities.

Make	sure	that	Brooklyn	has	access	to	the	machines	under	management.	This	includes	SSH,	which	might	be	done
with	a	public	IP	created	with	inbound	access	on	port	22	permitted	for	a	CIDR	range	including	the	IP	from	which
Brooklyn	contacts	it.	Alternatively	you	can	run	Brooklyn	on	a	machine	in	that	same	subnet,	or	set	up	a	VPN	or
jumphost	which	Brooklyn	will	use.

EC2	"Classic"	Problems	with	VPC-only	Hardware	Instance	Types

Deploying	Blueprint

141

http://jclouds.apache.org/guides/aws
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingCredentials.html
https://www.vaultproject.io/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/ec2/instance-types/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html


If	you	have	a	pre-2014	Amazon	account,	it	is	likely	configured	in	some	regions	to	run	in	"EC2	Classic"	mode	by
default,	instead	of	the	more	modern	"VPC"	default	mode.	This	can	cause	failures	when	requesting	certain	hardware
configurations	because	many	of	the	more	recent	hardware	"instance	types"	only	run	in	"VPC"	mode.	For	instance
when	requesting	an	instance	with		minRam:	8gb	,	Brooklyn	may	opt	for	an		m4.large	,	which	is	a	VPC-only	instance
type.	If	you	are	in	a	region	configured	to	use	"EC2	Classic"	mode,	you	may	see	a	message	such	as	this:

400	VPCResourceNotSpecified:	The	specified	instance	type	can	only	be	used	in	a	VPC.

A	subnet	ID	or	network	interface	ID	is	required	to	carry	out	the	request.

This	is	a	limitation	of	"legacy"	accounts.	The	easiest	fixes	are	either:

specify	an	instance	type	which	is	supported	in	classic,	such	as		m3.xlarge		(see	below)
move	to	a	different	region	where	VPC	is	the	default	(	eu-central-1		should	work	as	it	only	offers	VPC	mode,
irrespective	of	the	age	of	your	AWS	account)
get	a	new	AWS	account	--	"VPC"	will	be	the	default	mode	(Amazon	recommend	this	and	if	you	want	to	migrate
existing	deployments	they	provide	detailed	instructions)

To	understand	the	situation,	the	following	resources	may	be	useful:

Background	on	VPC	vs	Classic:	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
Good	succinct	answers	to	FAQs:	http://aws.amazon.com/vpc/faqs/#Default_VPCs
Check	if	a	region	in	your	account	is	"VPC"	or	"Classic":
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html#default-vpc-availability
Regarding	instance	types:

All	instance	types:	https://aws.amazon.com/ec2/instance-types
Those	which	require	VPC:	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html#vpc-only-
instance-types

If	you	want	to	solve	this	problem	with	your	existing	account,	you	can	create	a	VPC	and	instruct	Brooklyn	to	use	it:

1.	 Use	the	"Start	VPC	Wizard"	option	in	the	VPC	dashboard,	making	sure	it	is	for	the	right	region,	and	selecting	a
"Single	Public	Subnet".	(More	information	is	in	these	AWS	instructions.)

2.	 Once	the	VPC	is	created,	open	the	"Subnets"	view	and	modify	the	"Public	subnet"	so	that	it	will	"Auto-assign
Public	IP".

3.	 Next	click	on	the	"Security	Groups"	and	find	the		default		security	group	for	that	VPC.	Modify	its	"Inbound	Rules"
to	allow	"All	traffic"	from	"Anywhere".	(Or	for	more	secure	options,	see	the	instructions	in	the	previous	section,
"Using	Subnets".)

4.	 Finally	make	a	note	of	the	subnet	ID	(e.g.		subnet-a1b2c3d4	)	for	use	in	Brooklyn.

You	can	then	deploy	blueprints	to	the	subnet,	allowing	VPC	hardware	instance	types,	by	specifying	the	subnet	ID	as
the		networkName		in	your	YAML	blueprint.	This	is	covered	in	the	previous	section,	"Using	Subnets".

Tidying	up	after	jclouds

Security	groups	are	not	always	deleted	by	jclouds.	This	is	due	to	a	limitation	in	AWS	(see
https://issues.apache.org/jira/browse/JCLOUDS-207).	In	brief,	AWS	prevents	the	security	group	from	being	deleted
until	there	are	no	VMs	using	it.	However,	there	is	eventual	consistency	for	recording	which	VMs	still	reference	those
security	groups:	after	deleting	the	VM,	it	can	sometimes	take	several	minutes	before	the	security	group	can	be
deleted.	jclouds	retries	for	3	seconds,	but	does	not	block	for	longer.

Whilst	there	is	eventual	consistency	for	recording	which	VMs	still	reference	security	groups,	after	deleting	a	VM,	it	can
sometimes	take	several	minutes	before	a	security	group	can	be	deleted

There	is	utility	written	by	Cloudsoft	for	deleting	these	unused	resources:
http://blog.abstractvisitorpattern.co.uk/2013/03/tidying-up-after-jclouds.html.

Deploying	Blueprint

142

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-migrate.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html
https://console.aws.amazon.com/vpc
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-vpc
https://issues.apache.org/jira/browse/JCLOUDS-207
http://www.cloudsoft.io/
http://blog.abstractvisitorpattern.co.uk/2013/03/tidying-up-after-jclouds.html


section:	Azure	Compute	ARM	section_type:	inline

section_position:	2

Azure	Compute	ARM

Azure	Resource	Manager	(ARM)	is	a	framework	for	deploying	and	managing	applications	across	resources	and
managing	groups	of	resources	as	single	logical	units	on	the	Microsoft	Azure	cloud	computing	platform.

Setup	the	Azure	credentials

Azure	CLI	2.0

Firstly,	install	and	configure	Azure	CLI	following	these	steps.

You	will	need	to	obtain	your	subscription	ID	and	tenant	ID	from	Azure.	To	do	this	using	the	CLI,	first,	log	in:

az	login

Or,	if	you	are	already	logged	in,	request	an	account	listing:

az	account	list

In	either	case,	this	will	return	a	subscription	listing,	similar	to	that	shown	below.

[

		{

				"cloudName":	"AzureCloud",

				"id":	"012e832d-XXXX-XXXX-XXXX-XXXXXXXXXXXX",

				"isDefault":	true,

				"name":	"QA	Team",

				"state":	"Enabled",

				"tenantId":	"ba85e8cd-XXXX-XXXX-XXXX-XXXXXXXXXXXX",

				"user":	{

						"name":	"qa@example.com",

						"type":	"user"

				}

		},

		{

				"cloudName":	"AzureCloud",

				"id":	"341751b0-XXXX-XXXX-XXXX-XXXXXXXXXXXX",

				"isDefault":	false,

				"name":	"Developer	Team",

				"state":	"Enabled",

				"tenantId":	"ba85e8cd-XXXX-XXXX-XXXX-XXXXXXXXXXXX",

				"user":	{

						"name":	"dev@example.com",

						"type":	"user"

				}

		}

]

Choose	one	of	the	subscriptions	and	make	a	note	of	its	id	-	henceforth	the	subscription	ID	-	and	the	tenantId.

Next	we	need	to	create	an	application	and	a	service	principle,	and	grant	permissions	to	the	service	principle.	Use
these	commands:

Deploying	Blueprint

143

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest


#	Create	an	AAD	application	with	your	information.

az	ad	app	create	--display-name	<name>	--password	<Password>	--homepage	<home-page>	--identifier-uris	<identifi

er-uris>

#	For	example:	az	ad	app	create	--display-name	"myappname"		--password	abcd	--homepage	"https://myappwebsite"	-

-identifier-uris	"https://myappwebsite"

Take	a	note	of	the	appId	shown.

#	Create	a	Service	Principal

az	ad	sp	create	--id	<Application-id>

Take	a	note	of	the	objectId	shown	-	this	will	be	the	service	principal	object	ID.	(Note	that	any	of	the
servicePrincipalNames	can	also	be	used	in	place	of	the	object	ID.)

#	Assign	roles	for	this	service	principal.	The	"principal"	can	be	the	"objectId"	or	any	one	of	the	"servicePrin

cipalNames"	from	the	previous	step

az	role	assignment	create	--assignee	<Service-Principal>	--role	Contributor	--scope	/subscriptions/<Subscriptio

n-ID>/

By	this	stage	you	should	have	the	following	information:

A	subscription	ID
A	tenant	ID
An	application	ID
A	service	principle	(either	by	its	object	ID,	or	by	any	one	of	its	names)

We	can	now	verify	this	information	that	this	information	can	be	used	to	log	in	to	Azure:

az	login	--service-principal	-u	<Application-ID>	--password	abcd	--tenant	<Tenant-ID>

Azure	CLI	1.0

Firstly,	install	and	configure	Azure	CLI	following	these	steps.

Using	the	Azure	CLI,	run	the	following	commands	to	create	a	service	principal

#	Set	mode	to	ARM

azure	config	mode	arm

#	Enter	your	Microsoft	account	credentials	when	prompted

azure	login

#	Set	current	subscription	to	create	a	service	principal

azure	account	set	<Subscription-id>

#	Create	an	AAD	application	with	your	information.

azure	ad	app	create	--name	<name>	--password	<Password>	--home-page	<home-page>	--identifier-uris	<identifier-u

ris>

#	For	example:	azure	ad	app	create	--name	"myappname"		--password	abcd	--home-page	"https://myappwebsite"	--ide

ntifier-uris	"https://myappwebsite"

#	Output	will	include	a	value	for	`Application	Id`,	which	will	be	used	for	the	live	tests

#	Create	a	Service	Principal

azure	ad	sp	create	--applicationId	<Application-id>

#	Output	will	include	a	value	for	`Object	Id`,	to	be	used	in	the	next	step	

Deploying	Blueprint

144

https://docs.microsoft.com/en-us/azure/cli-install-nodejs


Run	the	following	commands	to	assign	roles	to	the	service	principal

#	Assign	roles	for	this	service	principal

azure	role	assignment	create	--objectId	<Object-id>	-o	Contributor	-c	/subscriptions/<Subscription-id>/

Look	up	the	the	tenant	Id

azure	account	show	-s	<Subscription-id>	--json

#	output	will	be	a	JSON	which	will	include	the	`Tenant	id`

Verify	service	principal

azure	login	-u	<Application-id>	-p	<Password>	--service-principal	--tenant	<Tenant-id>

Using	the	Azure	ARM	Location

Below	is	an	example	Azure	ARM	location	in	YAML	which	will	launch	a	Ubuntu	instance	in	south	east	asia:

brooklyn.catalog:

		id:	my-azure-arm-location

		name:	"My	Azure	ARM	location"

		itemType:	location

		item:

				type:	jclouds:azurecompute-arm

				brooklyn.config:

						identity:	<Application-id>

						credential:	<Password>

						endpoint:	https://management.azure.com/subscriptions/<Subscription-id>

						oauth.endpoint:	https://login.microsoftonline.com/<Tenant-id>/oauth2/token

						jclouds.azurecompute.arm.publishers:	OpenLogic

						region:	southeastasia

						loginUser:	brooklyn

						templateOptions:

								overrideAuthenticateSudo:	true	

Fill	the	values		<Application-id>	,		<Password>	,		<Subscription-id>		and		<Tenant-id>		in	from	the	values	generated
when	setting	up	your	credentials.	In	addition;	several	keys,	not	required	in	other	locations	need	to	be	specified	in	order
to	use	the	Azure	Compute	ARM	location.	These	are:

jclouds.azurecompute.arm.publishers:	OpenLogic

The	publishers	is	any	item	from	the	list	available	here:	https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-
machines-linux-cli-ps-findimage

region:	southeastasia				

The	region	is	any	region	from	the	list	available	here:	https://azure.microsoft.com/en-us/regions/

loginUser:	brooklyn

The	loginUser	can	be	anything,	as	long	as	it's	specified.

templateOptions:

				overrideAuthenticateSudo:	true

Deploying	Blueprint

145

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-linux-cli-ps-findimage
https://azure.microsoft.com/en-us/regions/


The		overrideAuthenticateSudo:	true		key	tells	Apache	Brooklyn	that	default	on	Azure	images	do	not	have
passwordless	sudo	configured	by	default.

Useful	configuration	options	for	Azure	ARM

You	can	add	these	options	directly	under	the		brooklyn.config		element	in	the	example	above:

	jclouds.compute.resourcename-prefix		and		jclouds.compute.resourcename-delimiter		-	defaults	to		jclouds		and		-	
respectively.	If	jclouds	is	choosing	the	name	for	a	resource	(for	example,	a	virtual	machine),	these	properties	will
alter	the	way	the	resource	is	named.

You	can	add	these	options	into	the		templateOptions		element	inside	the		brooklyn.config		element	in	the	example
above:

	resourceGroup		-	select	a	Resource	Group	to	deploy	resources	into.	If	not	given,	jclouds	will	generate	a	new
resource	group	with	a	partly-random	name.

Using	Windows	on	Azure	ARM

This	section	contains	material	how	to	create	a	Windows	location	on	Azure	ARM.	Some	of	the	used	parameters	are
explained	in	the	section	above.

Windows	on	Azure	ARM	requires	manually	created	Azure	KeyVault	Azure	KeyVaults	can	be	created	via	Azure	cli	or
Azure	portal	UI.	KeyVault's	secret	is	a	key	stored	in	protected	.PFX	file.	It	needs	to	be	prepared	upfront	or	created
with	the	Add-AzureKeyVaultKey	cmdlet.

	osFamily:	windows		tells	Apache	Brooklyn	to	consider	it	as	a	Windows	machine

	useJcloudsSshInit:	false		tells	jclouds	to	not	try	to	connect	to	the	VM

	vmNameMaxLength:	15		tells	the	cloud	client	to	strip	the	VM	name	to	maximum	15	characters.	This	is	the	maximum
size	supported	by	Azure	Windows	VMs.

	winrm.useHttps		tells	Apache	Brooklyn	to	configure	the	WinRM	client	to	use	HTTPS.

	secrets		Specifies	the	KeyVault	configuration

	sourceVault		Resource		id		of	the	KeyVault

	vaultCertificates			certificateStore		has	to	use		My		as	a	value.	KeyVault's		certificateUrl	.	An	URI	to	the
Secret	Identifier

	windowsConfiguration	

	provisionVMAgent		whether	Azure	to	install	an	agent	on	the	VM.	It	must	be	set	to		true	

	winRM		It	defines	the		listeners		section.	If		listeners		is		https		then		certificateUrl		needs	to	be	set.	Its	value
must	match	the	one	of		secrets	's		certificateUrl	.

	additionalUnattendContent		Additional	content.	Normally	it	can	be	defined	as		null	

	enableAutomaticUpdates		whether	to	enable	the	automatic	windows	updates.	It	can	be	set	to		false	,	if	automatic
updates	are	not	desired

Sample	Windows	Blueprint

Placeholders	surrounded	with		<>		have	to	be	replcaced	with	their	respective	values.

brooklyn.catalog:

Deploying	Blueprint

146

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-started
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-manage-with-cli2#create-a-key-vault
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-keyvault-parameter
https://docs.microsoft.com/en-us/powershell/module/azurerm.keyvault/add-azurekeyvaultkey?view=azurermps-4.0.0
https://docs.microsoft.com/en-us/rest/api/keyvault/about-keys--secrets-and-certificates#BKMK_DataTypes


		id:	my-azure-arm-location

		name:	"My	Azure	ARM	location"

		itemType:	location

		item:

				type:	jclouds:azurecompute-arm

				brooklyn.config:

						identity:	<Application-id>

						credential:	<Password>

						endpoint:	https://management.azure.com/subscriptions/<Subscription-id>

						oauth.endpoint:	https://login.microsoftonline.com/<Tenant-id>/oauth2/token

						jclouds.azurecompute.arm.publishers:	MicrosoftWindowsServer

						jclouds.azurecompute.operation.timeout:	120000

						winrm.useHttps:	true

						osFamily:	windows

						imageId:	<Azure_location>/MicrosoftWindowsServer/WindowsServer/2012-R2-Datacenter

						region:	<Azure_location>

						vmNameMaxLength:	15

						useJcloudsSshInit:	false

						destroyOnFailure:	false

						templateOptions:

								overrideLoginUser:	brooklyn

								overrideLoginPassword:	"secretPass1!"

								secrets:

								-	sourceVault:

												id:	"/subscriptions/<Subscription-id>/resourceGroups/<ResourceGroup>/providers/Microsoft.KeyVault/v

aults/<KeyVault-name>"

										vaultCertificates:

										-	certificateUrl:	"<KeyVault-uri>"

												certificateStore:	My

								windowsConfiguration:

										provisionVMAgent:	true

										winRM:

												listeners:

												-	protocol:	https

														certificateUrl:	"<KeyVault-uri>"

										additionalUnattendContent:	null

										enableAutomaticUpdates:	true

Known	issues

There	are	currently	two	known	issues	with	Azure	ARM:

It	can	take	a	long	time	for	VMs	to	be	provisioned
The	Azure	ARM	APIs	appear	to	have	some	fairly	strict	rate	limiting	that	can	result	in
AzureComputeRateLimitExceededException

section:	Azure	Compute	Classic	section_type:	inline

section_position:	3

Azure	Compute	Classic

Azure	is	a	cloud	computing	platform	and	infrastructure	created	by	Microsoft.	Apache	Brooklyn	includes	support	for
both	Azure	Classic	and	Azure	ARM,	as	one	of	the	Apache	jclouds	supported	clouds		Microsoft	Azure	Compute	.

The	two	modes	of	using	Azure	are	the	"classic	deployment"	model	and	the	newer	"Azure	Resource	Manager"	(ARM)
model.	See	https://azure.microsoft.com/en-gb/documentation/articles/resource-manager-deployment-model/	for
details.

Deploying	Blueprint

147

http://jclouds.org
https://azure.microsoft.com/en-gb/documentation/articles/resource-manager-deployment-model/


Setup	the	Azure	credentials

Microsoft	Azure	requests	are	signed	by	SSL	certificate.	You	need	to	upload	one	into	your	account	in	order	to	use	an
Azure	location.

#	create	the	certificate	request

mkdir	-m	700	$HOME/.brooklyn

openssl	req	-x509	-nodes	-days	365	-newkey	rsa:1024	-keyout	$HOME/.brooklyn/azure.pem	-out	$HOME/.brooklyn/azur

e.pem

#	create	the	p12	file,	and	note	your	export	password.	This	will	be	your	test	credentials.

openssl	pkcs12	-export	-out	$HOME/.brooklyn/azure.p12	-in	$HOME/.brooklyn/azure.pem	-name	"brooklyn	::	$USER"

#	create	a	cer	file

openssl	x509	-inform	pem	-in	$HOME/.brooklyn/azure.pem	-outform	der	-out	$HOME/.brooklyn/azure.cer

Finally,	upload	.cer	file	to	the	management	console	at
https://manage.windowsazure.com/@myId#Workspaces/AdminTasks/ListManagementCertificates	to	authorize	this
certificate.

Please	note,	you	can	find	the	"myId"	value	for	this	link	by	looking	at	the	URL	when	logged	into	the	Azure	management
portal.

Note,	you	will	need	to	use		.p12		format	in	the		brooklyn.properties	.

How	to	configure	Apache	Brooklyn	to	use	Azure	Compute

First,	in	your		brooklyn.properties		define	a	location	as	follows:

brooklyn.location.jclouds.azurecompute.identity=$HOME/.brooklyn/azure.p12

brooklyn.location.jclouds.azurecompute.credential=<P12_EXPORT_PASSWORD>

brooklyn.location.jclouds.azurecompute.endpoint=https://management.core.windows.net/<YOUR_SUBSCRIPTION_ID>

brooklyn.location.jclouds.azurecompute.vmNameMaxLength=45

brooklyn.location.jclouds.azurecompute.jclouds.azurecompute.operation.timeout=120000

brooklyn.location.jclouds.azurecompute.user=<USER_NAME>

brooklyn.location.jclouds.azurecompute.password=<PASSWORD>

During	the	VM	provisioning,	Azure	will	set	up	the	account	with		<USER_NAME>		and		<PASSWORD>		automatically.	Notice,
	<PASSWORD>		must	be	a	minimum	of	8	characters	and	must	contain	3	of	the	following:	a	lowercase	character,	an
uppercase	character,	a	number,	a	special	character.

To	force	Apache	Brooklyn	to	use	a	particular	image	in	Azure,	say	Ubuntu	14.04.1	64bit,	one	can	add:

brooklyn.location.jclouds.azurecompute.imageId=b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS-amd64-serve

r-20150123-en-us-30GB

From	$BROOKLYN_HOME,	you	can	list	the	image	IDs	available	using	the	following	command:

./bin/client	"list-images	--location	azure-west-europe"

To	force	Brooklyn	to	use	a	particular	hardwareSpec	in	Azure,	one	can	add	something	like:

brooklyn.location.jclouds.azurecompute.hardwareId=BASIC_A2

From	$BROOKLYN_HOME,	you	can	list	the	hardware	profile	IDs	available	using	the	following	command:

./bin/client	"list-hardware-profiles	--location	azure-west-europe"

Deploying	Blueprint

148

https://manage.windowsazure.com/@myId#Workspaces/AdminTasks/ListManagementCertificates


At	the	time	of	writing,	the	classic	deployment	model	has	the	possible	values	shown	below.	See
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/	for	further	details,	though	that
description	focuses	on	the	new	"resource	manager	deployment"	rather	than	"classic".

	Basic_A0		to		Basic_A4	
	Standard_D1		to		Standard_D4	
	Standard_G1		to		Standard_G5	
	ExtraSmall	,		Small	,		Medium	,		Large	,		ExtraLarge	

Named	location

For	convenience,	you	can	define	a	named	location,	like:

brooklyn.location.named.azure-west-europe=jclouds:azurecompute:West	Europe

brooklyn.location.named.azure-west-europe.displayName=Azure	West	Europe

brooklyn.location.named.azure-west-europe.imageId=b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-14_04_1-LTS-amd64-se

rver-20150123-en-us-30GB

brooklyn.location.named.azure-west-europe.hardwareId=BASIC_A2

brooklyn.location.named.azure-west-europe.user=test

brooklyn.location.named.azure-west-europe.password=MyPassword1!

This	will	create	a	location	named		azure-west-europe	.	It	will	inherit	all	the	configuration	defined	on
	brooklyn.location.jclouds.azurecompute	.	It	will	also	augment	and	override	this	configuration	(e.g.	setting	the	display
name,	image	id	and	hardware	id).

On	Linux	VMs,	The		user		and		password		will	create	a	user	with	that	name	and	set	its	password,	disabling	the	normal
login	user	and	password	defined	on	the		azurecompute		location.

Windows	VMs	on	Azure

The	following	configuration	options	are	important	for	provisioning	Windows	VMs	in	Azure:

	osFamily:	windows		tells	Apache	Brooklyn	to	consider	it	as	a	Windows	machine

	useJcloudsSshInit:	false		tells	jclouds	to	not	try	to	connect	to	the	VM

	vmNameMaxLength:	15		tells	the	cloud	client	to	strip	the	VM	name	to	maximum	15	characters.	This	is	the	maximum
size	supported	by	Azure	Windows	VMs.

	winrm.useHttps		tells	Apache	Brooklyn	to	configure	the	WinRM	client	to	use	HTTPS.

This	is	currently	not	supported	in	the	default	configuration	for	other	clouds,	where	Apache	Brooklyn	is	deploying
Windows	VMs.

If	the	parameter	value	is		false		the	default	WinRM	port	is	5985;	if		true		the	default	port	for	WinRM	will	be	5986.
Use	of	default	ports	is	stongly	recommended.

	winrm.useNtlm		tells	Apache	Brooklyn	to	configure	the	WinRM	client	to	use	NTLM	protocol.

For	Azure,	this	is	mandatory.

For	other	clouds,	this	value	is	used	in	the	cloud	init	script	to	configure	WinRM	on	the	VM.
If	the	value	is		true		then	Basic	Authentication	will	be	disabled	and	the	WinRM	client	will	only	use	Negotiate	plus
NTLM.
If	the	value	is		false		then	Basic	Authentication	will	be	enabled	and	the	WinRM	client	will	use	Basic
Authentication.

NTLM	is	the	default	Authentication	Protocol.

Deploying	Blueprint

149

https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/


The	format	of	this	configuration	option	is	subject	to	change:	WinRM	supports	several	authentication	mechanisms,
so	this	may	be	changed	to	a	prioritised	list	so	as	to	provide	fallback	options.

	user		tells	Apache	Brooklyn	which	user	to	login	as.	The	value	should	match	that	supplied	in	the
	overrideLoginUser		of	the		templateOptions	.

	password	:	tells	Apache	Brooklyn	the	password	to	use	when	connecting.	The	value	should	match	that	supplied	in
the		overrideLoginPassword		of	the		templateOptions	.

	templateOptions:	{	overrideLoginUser:	adminuser,	overrideLoginPassword:	Pa55w0rd!	}	

tells	the	Azure	Cloud	to	provision	a	VM	with	the	given	admin	username	and	password.	Note	that	no
"Administrator"	user	will	be	created.

If	this	config	is	not	set	then	the	VM	will	have	a	default	user	named	"jclouds"	with	password	"Azur3Compute!".	It	is
Strongly	Recommended	that	these	template	options	are	set.

Notice:	one	cannot	use		Administrator		as	the	user	in	Azure.

This	configuration	is	subject	to	change	in	future	releases.

Sample	Windows	Blueprint

Below	is	an	example	for	provisioning	a	Windows-based	entity	on	Azure.	Note	the	placeholder	values	for	the	identity,
credential	and	password.

name:	Windows	Test	@	Azure

location:

		jclouds:azurecompute:West	Europe:

				identity:	/home/users/brooklyn/.brooklyn/azure.p12

				credential:	xxxxxxxp12

				endpoint:	https://management.core.windows.net/12345678-1234-1234-1234-123456789abc

				imageId:	3a50f22b388a4ff7ab41029918570fa6__Windows-Server-2012-Essentials-20141204-enus

				hardwareId:	BASIC_A2

				osFamily:	windows

				useJcloudsSshInit:	false

				vmNameMaxLength:	15

				winrm.useHttps:	true

				user:	brooklyn

				password:	secretPass1!

				templateOptions:

						overrideLoginUser:	brooklyn

						overrideLoginPassword:	secretPass1!

services:

-	type:	org.apache.brooklyn.entity.software.base.VanillaWindowsProcess

		brooklyn.config:

				install.command:	echo	install	phase

				launch.command:	echo	launch	phase

				checkRunning.command:	echo	launch	phase

Below	is	an	example	named	location	for	Azure,	configured	in		brooklyn.properties	.	Note	the	placeholder	values	for
the	identity,	credential	and	password.

brooklyn.location.named.myazure=jclouds:azurecompute:West	Europe

brooklyn.location.named.myazure.displayName=Azure	West	Europe	(windows)

brooklyn.location.named.myazure.identity=$HOME/.brooklyn/azure.p12

brooklyn.location.named.myazure.credential=<P12_EXPORT_PASSWORD>

brooklyn.location.named.myazure.endpoint=https://management.core.windows.net/<YOUR_SUBSCRIPTION_ID>

brooklyn.location.named.myazure.vmNameMaxLength=15

brooklyn.location.named.myazure.jclouds.azurecompute.operation.timeout=120000

brooklyn.location.named.myazure.imageId=3a50f22b388a4ff7ab41029918570fa6__Windows-Server-2012-Essentials-201412

04-enus

brooklyn.location.named.myazure.hardwareId=BASIC_A2

brooklyn.location.named.myazure.osFamily=windows

Deploying	Blueprint

150



brooklyn.location.named.myazure.useJcloudsSshInit=false

brooklyn.location.named.myazure.winrm.useHttps=true

brooklyn.location.named.myazure.user=brooklyn

brooklyn.location.named.myazure.password=secretPass1!

brooklyn.location.named.myazure.templateOptions={	overrideLoginUser:	amp,	overrideLoginPassword:	secretPass1!	}

User	and	Password	Configuration

As	described	under	the	configuration	options,	the	username	and	password	must	be	explicitly	supplied	in	the
configuration.

This	is	passed	to	the	Azure	Cloud	during	provisioning,	to	create	the	required	user.	These	values	correspond	to	the
options		AdminUsername		and		AdminPassword		in	the	Azure	API.

If	a	hard-coded	password	is	not	desired,	then	within	Java	code	a	random	password	could	be	auto-generated	and
passed	into	the	call	to		location.obtain(Map<?,?>)		to	override	these	values.

This	approach	differs	from	the	behaviour	of	clouds	like	AWS,	where	the	password	is	auto-generated	by	the	cloud
provider	and	is	then	retrieved	via	the	cloud	provider's	API	after	provisioning	the	VM.

WinRM	Configuration

The	WinRM	initialization	in	Azure	is	achieved	through	configuration	options	in	the	VM	provisioning	request.	The
required	configuration	is	to	enabled	HTTPS	(if	Azure	is	told	to	use	http,	the	VM	comes	pre-configured	with	WinRM
encrypted	over	HTTP).	The	default	is	then	to	support	NTLM	protocol.

The	setup	of	Windows	VMs	on	Azure	differs	from	that	on	other	clouds,	such	as	AWS.	In	contrast,	on	AWS	an	init
script	is	passed	to	the	cloud	API	to	configure	WinRM	appropriately.

Windows	initialization	scripts	in	Azure	are	unfortunately	not	supported	in	"classic	deployment"
model,	but	are	available	in	the	newer	"resource	manager	deployment"	model	as	an	"Azure	VM	Extension".

section:	CloudStack	title:	Apache	CloudStack	section_type:	inline

section_position:	4

Apache	CloudStack

Connection	Details

The	endpoint	URI	will	normally	have	the	suffix		/client/api/	.

The	identity	is	the	"api	key"	and	the	credential	is	the	"secret	key".	These	can	be	generated	in	the	CloudStack	gui:
under	accounts,	select	"view	users",	then	"generate	key".

location:

		jclouds:cloudstack:

				endpoint:	https://cloud.acme.com/client/api

				identity:	abcdefghijklmnopqrstuvwxyz01234567890-abcdefghijklmnopqrstuvwxyz01234567890-abcdefghij

				credential:	mycred-abcdefghijklmnopqrstuvwxyz01234567890-abcdefghijklmnopqrstuvwxyz01234567890-abc

Users	are	strongly	recommended	to	use	externalized	configuration	for	better	credential	management,	for	example
using	Vault.

Deploying	Blueprint

151

https://www.vaultproject.io/


Common	Configuration	Options

Below	are	examples	of	configuration	options	that	use	values	specific	to	CloudStack	environments:

The		imageId		is	the	template	id.	For	example,		imageId:	db0bcce3-9e9e-4a87-a953-2f46b603498f	.

The		region		is	CloudStack	zone	id.	For	example		region:	84539b9c-078e-458a-ae26-c3ffc5bb1ec9	..

	networkName		is	the	network	id	(within	the	given	zone)	to	be	used.	For	example,		networkName:	961c03d4-9828-4037-
9f4d-3dd597f60c4f	.

For	further	configuration	options,	consult	jclouds	CloudStack	template	options.	These	can	be	used	with	the
templateOptions	configuration	option.

Using	a	Pre-existing	Key	Pair

The	configuration	below	uses	a	pre-existing	key	pair:

location:

		jclouds:cloudstack:

				...

				loginUser:	root

				loginUser.privateKeyFile:	/path/to/keypair.pem

				keyPair:	my-keypair

Using	Pre-existing	Security	Groups

To	specify	existing	security	groups,	their	IDs	must	be	used	rather	than	their	names	(note	this	differs	from	the
configuration	on	other	clouds!).

The	configuration	below	uses	a	pre-existing	security	group:

location:

		jclouds:cloudstack:

				...

				templateOptions:

						generateSecurityGroup:	false

						securityGroupIds:

						-	12345678-90ab-def0-1234-567890abcdef

Using	Static	NAT

Assigning	a	public	IP	to	a	VM	at	provision-time	is	referred	to	as	"static	NAT"	in	CloudStack	parlance.	To	give	some
consistency	across	different	clouds,	the	configuration	option	is	named		autoAssignFloatingIp	.	For	example,
	autoAssignFloatingIp:	false	.

CloudMonkey	CLI

The	CloudStack	CloudMonkey	CLI	is	a	very	useful	tool.	It	gives	is	an	easy	way	to	validate	that	credentials	are	correct,
and	to	query
the	API	to	find	the	correct	zone	IDs	etc.

Useful	commands	include:

#	for	finding	the	ids	of	the	zones:

cloudmonkey	api	listZones

#	for	finding	the	ids	of	the	networks.

Deploying	Blueprint

152

https://jclouds.apache.org/reference/javadoc/1.9.x/org/jclouds/cloudstack/compute/options/CloudStackTemplateOptions.html
https://cwiki.apache.org/confluence/display/CLOUDSTACK/CloudStack+cloudmonkey+CLI


cloudmonkey	api	listNetworks	|	grep	-E	"id	=|name	=|========="

CloudStack	Troubleshooting

These	troubleshooting	tips	are	more	geared	towards	problems	encountered	in	old	test/dev	CloudStack	environment.

Resource	Garbage	Collection	Issues

The	environment	may	run	out	of	resources,	due	to	GC	issues,	preventing	the	user	from	creating	new	VMs	or
allocating	IP	addresses	(May	respond	with	this	error	message:		errorCode=INTERNAL_ERROR,	errorText=Job	failed	due	to
exception	Unable	to	create	a	deployment	for	VM	).	There	are	two	options	worth	checking	it	to	enforce	clearing	up	the
zombie	resources:

Go	to	the	Accounts	tab	in	the	webconsole	and	tap	on	the	Update	Resource	Count	button.
Restart	the	VPC	in	question	from	the	Network	tab.

Releasing	Allocated	Public	IP	Addresses

Releasing	an	allocated	Public	IP	from	the	web	console	did	not	free	up	the	resources.	Instead	CloudMonkey	can	be
used	to	dissociate	IPs	and	expunge	VMs.

Here	is	a	CloudMonkey	script	to	dissociate	any	zombie	IPs:

cloudmonkey	set	display	json;

cloudmonkey	api	listPublicIpAddresses	|	grep	'"id":'	>	ips.txt;	

sed	-i	-e	s/'						"id":	"'/''/g	ips.txt;

sed	-i	-e	s/'",'/''/g	ips.txt

for	line	in	$(cat	ips.txt);	do	cloudmonkey	api	disassociateIpAddress	id="$line";	done

rm	ips.txt;

cloudmonkey	set	display	default;

Restarting	VPCs

Errors	have	been	encountered	when	a	zone	failed	to	provision	new	VMs,	with	messages	like:

Job	failed	due	to	exception	Resource	[Host:15]	is	unreachable:	Host	15:	Unable	to	start	instance	due	to	null

The	workaround	was	to	restart	the	VPC	networks:

Log	into	the	CloudStack	web-console.
Go	to	Network	->	VPC	(from	the	"select	view")
For	each	of	the	VPCs,	click	on	the	"+"	in	the	"quickview"	column,	and	invoke	"restart	VPC".

Other	symptoms	of	this	issue	were	that:	1)	an	administrator	could	still	provision	VMs	using	the	admin	account,	which
used	a	different	network;	and	2)	the	host	number	was	very	low,	so	it	was	likely	to	be	a	system	host/VM	that	was	faulty.

section:	Google	Compute	Engine	(GCE)	title:	Google	Compute	Engine	section_type:	inline

section_position:	5

Google	Compute	Engine	(GCE)

Deploying	Blueprint

153



Credentials

GCE	uses	a	service	account	e-mail	address	for	the	identity	and	a	private	key	as	the	credential.

To	obtain	credentials	for	GCE,	use	the	GCE	web	page's	"APIs	&	auth	->	Credentials"	page,	creating	a	"Service
Account"	of	type	JSON,	then	extracting	the	client_email	as	the	identity	and	private_key	as	the	credential.	For	more
information,	see	the	jclouds	instructions.

An	example	of	the	expected	format	is	shown	below.	Note	that	when	supplying	the	credential	in	a	properties	file,	it	can
either	be	one	long	line	with		\n		representing	the	new	line	characters,	or	in	YAML	it	can	be	split	over	multiple	lines	as
below:

location:

		jclouds:google-compute-engine:

				region:	us-central1-a

				identity:	1234567890-somet1mesArand0mU1Dhere@developer.gserviceaccount.com

				credential:	|

						-----BEGIN	RSA	PRIVATE	KEY-----

						abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz

						0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmn

						opqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+ab

						cdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz01

						23456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnop

						qrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcd

						efghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123

						456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqr

						stuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdef

						ghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz012345

						6789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrst

						uvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefgh

						ijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz01234567

						89/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuv

						wxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghij

						klmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789

						/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwx

						yz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijkl

						mnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+

						abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz

						0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+abcdefghijklmn

						opqrstuvwxyz0123456789/+abcdefghijklmnopqrstuvwxyz0123456789/+ab

						cdefghijklmnopqrstuvwxyz

						-----END	RSA	PRIVATE	KEY-----

It	is	also	possible	to	have	the	credential	be	the	path	of	a	local	file	that	contains	the	key.	However,	this	can	make	it
harder	to	setup	and	manage	multiple	Brooklyn	servers	(particularly	when	using	high	availability	mode).

Users	are	strongly	recommended	to	use	externalized	configuration	for	better	credential	management,	for	example
using	Vault.

Quotas

GCE	accounts	can	have	low	default	quotas.

It	is	easy	to	request	a	quota	increase	by	submitting	a	quota	increase	form.

Networks

GCE	accounts	often	have	a	limit	to	the	number	of	networks	that	can	be	created.	One	work	around	is	to	manually
create	a	network	with	the	required	open	ports,	and	to	refer	to	that	named	network	in	Brooklyn's	location	configuration.

To	create	a	network,	see	GCE	network	instructions.

Deploying	Blueprint

154

https://jclouds.apache.org/guides/google
https://www.vaultproject.io/
https://cloud.google.com/compute/docs/resource-quotas
https://support.google.com/cloud/answer/6075746?hl=en
https://cloud.google.com/compute/docs/networking#networks_1


For	example,	for	dev/demo	purposes	an	"everything"	network	could	be	created	that	opens	all	ports.

||	Name	||	everything	|	||	Description	||	opens	all	tcp	ports	|	||	Source	IP	Ranges	||	0.0.0.0/0	|	||	Allowed	protocols	and
ports	||	tcp:0-65535	and	udp:0-65535	|

To	configure	the	location	to	use	this,	you	can	include	a	location	configuration	option	like:

templateOptions:

		network:	https://www.googleapis.com/compute/v1/projects/<project	name>/global/networks/everything

section:	IBM	Softlayer	title:	IBM	Softlayer	section_type:	inline

section_position:	6

IBM	SoftLayer

Credentials

Credentials	can	be	obtained	from	the	Softlayer	API,	under	"administrative	->	user	administration	->	api-access".

For	example:

location:

		jclouds:softlayer:

				region:	ams01

				identity:	my-user-name

				credential:	1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef

Users	are	strongly	recommended	to	use	externalized	configuration	for	better	credential	management,	for	example
using	Vault.

Common	Configuration	Options

Below	are	examples	of	configuration	options	that	use	values	specific	to	Softlayer:

The		region		is	the	Softlayer	datacenter.	For	example,		region:	dal05	.

The		hardwareId		is	an	auto-generated	combination	of	the	hardware	configuration	options.	This	is	because	there
is	no	concept	of	hardwareId	or	hardware	profile	names	in	Softlayer.	An	example	value	is		hardwareId:
"cpu=1,memory=1024,disk=25,type=LOCAL"	.

The		imageId		is	the	Image	template.	For	example,		imageId:	CENTOS_6_64	.

VLAN	Selection

SoftLayer	may	provision	VMs	in	different	VLANs,	even	within	the	same	region.	Some	applications	require	VMs	to	be
on	the	same	internal	subnet;	blueprints	for	these	can	specify	this	behaviour	in	SoftLayer	in	one	of	two	ways.

The	VLAN	ID	can	be	set	explicitly	using	the	fields		primaryNetworkComponentNetworkVlanId		and
	primaryBackendNetworkComponentNetworkVlanId		of		SoftLayerTemplateOptions		when	specifying	the	location	being	used
in	the	blueprint,	as	follows:

location:

Deploying	Blueprint

155

https://www.vaultproject.io/
http://www.softlayer.com/data-centers
https://knowledgelayer.softlayer.com/learning/introduction-image-templates


		jclouds:softlayer:

				region:	ams01

				templateOptions:

						#	Enter	your	preferred	network	IDs

						primaryNetworkComponentNetworkVlanId:	1153481

						primaryBackendNetworkComponentNetworkVlanId:	1153483

This	method	requires	that	a	VM	already	exist	and	you	look	up	the	IDs	of	its	VLANs,	for	example	in	the	SoftLayer
console	UI,	and	that	subsequently	at	least	one	VM	in	that	VLAN	is	kept	around.	If	all	VMs	on	a	VLAN	are	destroyed
SoftLayer	may	destroy	the	VLAN.	Creating	VLANs	directly	and	then	specifying	them	as	IDs	here	may	not	work.	Add	a
line	note

The	second	method	tells	Brooklyn	to	discover	VLAN	information	automatically:	it	will	provision	one	VM	first,	and	use
the	VLAN	information	from	it	when	provisioning	subsequent	machines.	This	ensures	that	all	VMs	are	on	the	same
subnet	without	requiring	any	manual	VLAN	referencing,	making	it	very	easy	for	end-users.

To	use	this	method,	we	tell	brooklyn	to	use		SoftLayerSameVlanLocationCustomizer		as	a	location	customizer.	This	can
be	done	on	a	location	as	follows:

location:

		jclouds:softlayer:

				region:	lon02

				customizers:

				-	$brooklyn:object:

								type:	org.apache.brooklyn.location.jclouds.softlayer.SoftLayerSameVlanLocationCustomizer

				softlayer.vlan.scopeUid:	"my-custom-scope"

				softlayer.vlan.timeout:	10m

Usually	you	will	want	the	scope	to	be	unique	to	a	single	application,	but	if	you	need	multiple	applications	to	share	the
same	VLAN,	simply	configure	them	with	the	same	scope	identifier.

It	is	also	possible	with	many	blueprints	to	specify	this	as	one	of	the		provisioning.properties		on	an	application:

services:

-	type:	org.apache.brooklyn.entity.stock.BasicApplication

		id:	same-vlan-application

		brooklyn.config:

				provisioning.properties:

						customizers:

						-	$brooklyn:object:

										type:	org.apache.brooklyn.location.jclouds.softlayer.SoftLayerSameVlanLocationCustomizer

				softlayer.vlan.scopeUid:	"my-custom-scope"

				softlayer.vlan.timeout:	10m

If	you	are	writing	an	entity	in	Java,	you	can	also	use	the	helper	method		forScope(String)		to	create	the	customizer.
Configure	the	provisioning	flags	as	follows:

JcloudsLocationCustomizer	vlans	=	SoftLayerSameVlanLocationCustomizer.forScope("my-custom-scope");

flags.put(JcloudsLocationConfig.JCLOUDS_LOCATION_CUSTOMIZERS.getName(),	ImmutableList.of(vlans));

Configuration	Options

The	allowed	configuration	keys	for	the		SoftLayerSameVlanLocationCustomizer		are:

softlayer.vlan.scopeUid	The	scope	identifier	for	locations	whose	VMs	will	have	the	same	VLAN.

softlayer.vlan.timeout	The	amount	of	time	to	wait	for	a	VM	to	be	configured	before	timing	out	without	setting	the
VLAN	ids.

Deploying	Blueprint

156



softlayer.vlan.publicId	A	specific	public	VLAN	ID	to	use	for	the	specified	scope.

softlayer.vlan.privateId	A	specific	private	VLAN	ID	to	use	for	the	specified	scope.

An	entity	being	deployed	to	a	customized	location	will	have	the	VLAN	ids	set	as	sensors,	with	the	same	names	as	the
last	two	configuration	keys.

NOTE	If	the	SoftLayer	location	is	already	configured	with	specific	VLANs	then	this	customizer	will	have	no	effect.

section:	OpenStack	title:	OpenStack	section_type:	inline

section_position:	7

OpenStack

Apache	jclouds

Support	for	OpenStack	is	provided	by	Apache	jclouds.	For	more	information,	see	their	guide	here.

Connection	Details

The	endpoint	URI	is	that	of	keystone	(normally	on	port	5000).

The	identity	normally	consists	of	a	colon-separated	tenant	and	username.	The	credential	is	the	password.	For
example:

location:

		jclouds:openstack-nova:

				endpoint:	http://x.x.x.x:5000/v2.0/

				identity:	"your-tenant:your-username"

				credential:	your-password

OpenStack	Nova	access	information	can	be	downloaded	from	the	openstack	web	interface,	for	example	as	an
openrc.sh	file.	It	is	usually	available	from	API	Access	tab	in	"Access	&	Security"	section.	This	file	will	normally	contain
the	identity	and	credential.

Users	are	strongly	recommended	to	use	externalized	configuration	for	better	credential	management,	for	example
using	Vault.

Common	Configuration	Options

Below	are	examples	of	configuration	options	that	use	values	specific	to	OpenStack	environments:

The		imageId		is	the	id	of	an	image.	For	example,		imageId:	RegionOne/08086159-8b0b-4970-b332-a7a929ee601f	.
These	ids	can	be	found	from	the	the	CLI	or	the	web-console,	for	example	in	IBM	Blue	Box	London,	the	URL	is
https://tenant-region.openstack.blueboxgrid.com/project/images/.

The		hardwareId		is	the	flavor	id.	For	example		hardwareId:	RegionOne/1	.	These	ids	can	be	found	from	the	the	CLI
or	the	web-console,	for	example	in	IBM	Blue	Box,	the	URL	is	https://tenant-
region.openstack.blueboxgrid.com/admin/flavors/.

The	default	flavors	are	shown	below	(though	the	set	of	flavors	can	be	managed	by	the	admin):

+-----+-----------+-----------+------+

Deploying	Blueprint

157

https://jclouds.apache.org/guides/openstack/
https://www.vaultproject.io/
https://tenant-region.openstack.blueboxgrid.com/project/images/
http://docs.openstack.org/admin-guide/compute-flavors.html
https://tenant-region.openstack.blueboxgrid.com/admin/flavors/
http://docs.openstack.org/admin-guide/cli_manage_flavors.html


|	ID		|	Name						|	Memory_MB	|	Disk	|

+-----+-----------+-----------+------+

|	1			|	m1.tiny			|	512							|	1				|

|	2			|	m1.small		|	2048						|	20			|

|	3			|	m1.medium	|	4096						|	40			|

|	4			|	m1.large		|	8192						|	80			|

|	5			|	m1.xlarge	|	16384					|	160		|

+-----+-----------+-----------+------+

For	further	configuration	options,	consult	jclouds	Nova	template	options.	These	can	be	used	with	the
templateOptions	configuration	option.

Networks

When	multiple	networks	are	available	you	should	indicate	which	ones	machines	should	join.	Do	this	by	setting	the
desired	values	id	as	an	option	in	the	templateOptions	configuration:

location:

		jclouds:openstack-nova:

				...

				templateOptions:

						#	Assign	the	node	to	all	networks	in	the	list.

						networks:

						-	network-one-id

						-	network-two-id

						-	...

Floating	IPs

The		autoAssignFloatingIp		option	means	that	a	floating	ip	will	be	assigned	to	the	VM	at	provision-time.

A	floating	IP	pool	name	can	also	be	specified.	If	not	set,	a	floating	IP	from	any	available	pool	will	be	chosen.	This	is
set	using	the	template	option.	For	example:

location:

		jclouds:openstack-nova:

				...

				autoAssignFloatingIp:	true

				templateOptions:

						#	Pool	names	to	use	when	allocating	a	floating	IP

						floatingIpPoolNames:

						-	"pool	name"

Basic	Location	Structure

This	is	a	basic	inline	YAML	template	for	an	OpenStack	location:

location:

				jclouds:openstack-nova:

								endpoint:	http://x.x.x.x:5000/v2.0/

								identity:	"your-tenant:your-username"

								credential:	your-password

								#	imageId,	hardwareId,	and	loginUser*	are	optional

								imageId:	your-region-name/your-image-id

								hardwareId:	your-region-name/your-flavor-id

								loginUser:	'ubuntu'

								loginUser.privateKeyFile:	/path/to/your/privatekey

								jclouds.openstack-nova.auto-generate-keypairs:	false

Deploying	Blueprint

158

https://jclouds.apache.org/reference/javadoc/2.0.x/org/jclouds/openstack/nova/v2_0/compute/options/NovaTemplateOptions.html
https://www.mirantis.com/blog/configuring-floating-ip-addresses-networking-openstack-public-private-clouds/


								jclouds.openstack-nova.auto-create-floating-ips:	true

								templateOptions:

												networks:	[	"your-network-id"	]

												floatingIpPoolNames:	[	"your-floatingIp-pool"	]

												securityGroups:	['your-security-group']

												#	Optional	if	'jclouds.openstack-nova.auto-generate-keypairs'	is	assigned	to	'true'

												keyPairName:	"your-keypair"

This	is	the	same	OpenStack	location	in	a	format	that	can	be	added	to	your		brooklyn.properties		file:

brooklyn.location.named.My\	OpenStack=jclouds:openstack-nova:http://x.x.x.x:5000/v2.0/

brooklyn.location.named.My\	OpenStack.identity=your-tenant:your-username

brooklyn.location.named.My\	OpenStack.credential=your-password

brooklyn.location.named.My\	OpenStack.endpoint=http://x.x.x.x:5000/v2.0/

brooklyn.location.named.My\	OpenStack.imageId=your-region-name/your-image-id

brooklyn.location.named.My\	OpenStack.hardwareId=your-region-name/your-flavor-id

brooklyn.location.named.My\	OpenStack.loginUser=ubuntu

brooklyn.location.named.My\	OpenStack.loginUser.privateKeyFile=/path/to/your/privatekey

brooklyn.location.named.My\	OpenStack.openstack-nova.auto-generate-keypairs=false

brooklyn.location.named.My\	OpenStack.openstack-nova.auto-create-floating-ips=true

brooklyn.location.named.My\	OpenStack.networks=your-network-id

brooklyn.location.named.My\	OpenStack.floatingIpPoolNames=your-floatingIp-pool

brooklyn.location.named.My\	OpenStack.securityGroups=your-security-group

brooklyn.location.named.My\	OpenStack.keyPair=your-keypair

Troubleshooting

Cloud	Credentials	Failing

If	the	cloud	API	calls	return		401	Unauthorized		(e.g.	in	a		org.jclouds.rest.AuthorizationException	),	then	this	could	be
because	the	credentials	are	incorrect.

A	good	way	to	check	this	is	to	try	the	same	credentials	with	the	OpenStack	nova	command	line	client.

Unable	to	SSH:	Wrong	User

If	SSH	authentication	fails,	it	could	be	that	the	login	user	is	incorrect.	For	most	clouds,	this	is	inferred	from	the	image
metadata,	but	if	no	(or	the	wrong)	login	user	is	specified	then	it	will
default	to	root.	The	correct	login	user	can	be	specified	using	the	configuration	option		loginUser	.	For	example,
	loginUser:	ubuntu	.

The	use	of	the	wrong	login	user	can	also	result	in	the	obscure	message,	caused	by	an	unexpected	response	saying	to
use	a	different	user.	For	more	technical	information,	see	this	sshj	github	issue.	The	message	is:

Received	message	too	long	1349281121

I	Want	to	Use	My	Own	KeyPair

By	default,	jclouds	will	auto-generate	a	new	key	pair	for	the	VM.	This	key	pair	will	be	deleted	automatically	when	the
VM	is	deleted.

Alternatively,	you	can	use	a	pre-existing	key	pair.	If	so,	you	must	also	specify	the	corresponding	private	key	(pem	file,
or	data)	to	be	used	for	the	initial	login.	The	name	used	in	the		keyPair		configuration	must	match	the	name	of	a	key
pair	that	has	already	been	added	in	OpenStack.	For	example:

Deploying	Blueprint

159

http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html
https://github.com/hierynomus/sshj/issues/75
http://docs.openstack.org/user-guide/cli_nova_configure_access_security_for_instances.html


location:

		jclouds:clouds:openstack-nova:

				...

				jclouds.openstack-nova.auto-generate-keypairs:	false

				keyPair:	"my-keypair"

				loginUser:	ubuntu

				loginUser.privateKeyFile:	/path/to/my/privatekey.pem

Error	"doesn't	contain	...	-----BEGIN"

If	using		loginUser.privateKeyFile		(or		loginUser.privateKeyData	),	this	is	expected	to	be	a	.pem	file.	If	a	different
format	is	used	(e.g.	a	.ppk	file),	it	will	give	an	error	like	that	below:

Error	invoking	start	at	EmptySoftwareProcessImpl{id=TrmhitVc}:	chars

PuTTY-User-Key-File-2:	ssh-rsa

...

doesn't	contain	%	line	[-----BEGIN	]

Warning	Message:	"Ignoring	request	to	set..."

If	you	see	a	warning	log	message	like	that	below:

2016-06-23	06:05:12,297	WARN		o.a.b.l.j.JcloudsLocation	[brooklyn-execmanager-XlwkWB3k-312]:	

Ignoring	request	to	set	template	option	loginUser	because	this	is	not	supported	by	

org.jclouds.openstack.nova.v2_0.compute.options.NovaTemplateOptions

It	can	mean	that	the	location	configuration	option	is	in	the	wrong	place.	The	configuration	under		templateOptions	
must	correspond	to	those	options	on	the	jclouds	Nova	template	options.	However,	template	options	such	as
	loginUser		are	top-level	configuration	options	that	should	not	be	inside	the		templateOptions		section.

HttpResponseException	Accessing	Compute	Endpoint

The	Keystone	endpoint	is	first	queried	to	get	the	API	access	endpoints	for	the	appropriate	services.

Some	private	OpenStack	installs	are	(mis)configured	such	that	the	returned	addresses	are	not	always	directly
accessible.	It	could	be	that	the	service	is	behind	a	VPN,	or	that	they	rely	on	hostnames	that	are	only	in	a	private	DNS.

You	can	find	the	service	endpoints	in	OpenStack,	either	using	the	CLI	or	the	web-console.	For	example,	in	Blue	Box
the	URL	is	https://tenant-region.openstack.blueboxgrid.com/project/access_and_security/.	You	can	then	check	if	the
Compute	service	endpoint	is	directly	reachable.

VM	Failing	to	Provision

It	can	be	useful	to	drop	down	to	the	OpenStack	nova	CLI,	or	to	jclouds,	to	confirm	that	VM	provisioning	is	working	and
to	check	which	options	are	required.

For	example,	try	following	these	jclouds	instructions.

jclouds	Namespace	Issue

A	change	to	Nova's	API	(in	the	Mitaka	release)	resulted	in	all	extensions	having	the	same	"fake"	namespace	which
the	current	version	of	jclouds	does	not	yet	support.

If	you	are	having	problems	deploying	to	OpenStack,	consult	your	Brooklyn	debug	log	and	look	for	the	following:

Deploying	Blueprint

160

https://jclouds.apache.org/reference/javadoc/1.9.x/org/jclouds/openstack/nova/v2_0/compute/options/NovaTemplateOptions.html
https://tenant-region.openstack.blueboxgrid.com/project/access_and_security/
https://github.com/jclouds/jclouds-examples/tree/master/compute-basics#your-own-openstack-nova


"namespace":	"http://docs.openstack.org/compute/ext/fake_xml"

If	you	already	have		jclouds:openstack-mitaka-nova	,	then	try	using	this	instead	of	the	vanilla		jclouds:openstack-nova	.
For	example:

location:

				jclouds:openstack-mitaka-nova:

								endpoint:	http://x.x.x.x:5000/v2.0/

								identity:	"your-tenant:your-username"

								credential:	your-password

								templateOptions:

												networks:	[	"your-network-id"	]

												floatingIpPoolNames:	[	"your-floatingIp-pool"	]

Note	that	the	following	values	will	be	set	by	default	when	omitted	above:

jclouds.keystone.credential-type=passwordCredentials

jclouds.openstack-nova.auto-generate-keypairs:	true

jclouds.openstack-nova.auto-create-floating-ips:	true

section:	Inheritance	and	Named	Locations	title:	Named	Locations	section_type:	inline

section_position:	7

Inheritance	and	Named	Locations

Named	locations	can	be	defined	for	commonly	used	groups	of	properties,	with	the	syntax
	brooklyn.location.named.your-group-name.		followed	by	the	relevant	properties.	These	can	be	accessed	at	runtime
using	the	syntax		named:your-group-name		as	the	deployment	location.

Some	illustrative	examples	using	named	locations	and	showing	the	syntax	and	properties	above	are	as	follows:

#	Production	pool	of	machines	for	my	application	(deploy	to	named:prod1)

brooklyn.location.named.prod1=byon:(hosts="10.9.1.1,10.9.1.2,produser2@10.9.2.{10,11,20-29}")

brooklyn.location.named.prod1.user=produser1

brooklyn.location.named.prod1.privateKeyFile=~/.ssh/produser_id_rsa

brooklyn.location.named.prod1.privateKeyPassphrase=s3cr3tCOMPANYpassphrase

#	AWS	using	my	company's	credentials	and	image	standard,	then	labelling	images	so	others	know	they're	mine

brooklyn.location.named.company-jungle=jclouds:aws-ec2:us-west-1

brooklyn.location.named.company-jungle.identity=BCDEFGHIJKLMNOPQRSTU		

brooklyn.location.named.company-jungle.privateKeyFile=~/.ssh/public_clouds/company_aws_id_rsa

brooklyn.location.named.company-jungle.imageId=ami-12345

brooklyn.location.named.company-jungle.minRam=2048

brooklyn.location.named.company-jungle.userMetadata=application=my-jungle-app,owner="Bob	Johnson"

brooklyn.location.named.company-jungle.machineCreateAttempts=2

brooklyn.location.named.AWS\	Virginia\	Large\	Centos	=	jclouds:aws-ec2

brooklyn.location.named.AWS\	Virginia\	Large\	Centos.region	=	us-east-1

brooklyn.location.named.AWS\	Virginia\	Large\	Centos.imageId=us-east-1/ami-7d7bfc14

brooklyn.location.named.AWS\	Virginia\	Large\	Centos.user=root

brooklyn.location.named.AWS\	Virginia\	Large\	Centos.minRam=4096

Named	locations	can	refer	to	other	named	locations	using		named:xxx		as	their	value.	These	will	inherit	the
configuration	and	can	override	selected	keys.	Properties	set	in	the	namespace	of	the	provider	(e.g.		b.l.jclouds.aws-
ec2.KEY=VALUE	)	will	be	inherited	by	everything	which	extends	AWS	Sub-prefix	strings	are	also	inherited	up	to

Deploying	Blueprint

161



	brooklyn.location.*	,	except	that	they	are	filtered	for	single-word	and	other	known	keys	(so	that	we	exclude	provider-
scoped	properties	when	looking	at	sub-prefix	keys).	The	precedence	for	configuration	defined	at	different	levels	is	that
the	value	defined	in	the	most	specific	context	will	apply.

This	is	rather	straightforward	and	powerful	to	use,	although	it	sounds	rather	more	complicated	than	it	is!	The	examples
below	should	make	it	clear.	You	could	use	the	following	to	install	a	public	key	on	all	provisioned	machines,	an
additional	public	key	in	all	AWS	machines,	and	no	extra	public	key	in		prod1	:

brooklyn.location.extraSshPublicKeyUrls=http://me.com/public_key

brooklyn.location.jclouds.aws-ec2.extraSshPublicKeyUrls="[	\"http://me.com/public_key\",	\"http://me.com/aws_pu

blic_key\"	]"

brooklyn.location.named.prod1.extraSshPublicKeyUrls=

And	in	the	example	below,	a	config	key	is	repeatedly	overridden.	Deploying		location:	named:my-extended-aws		will
result	in	an		aws-ec2		machine	in		us-west-1		(by	inheritance)	with		VAL6		for		KEY	:

brooklyn.location.KEY=VAL1

brooklyn.location.jclouds.KEY=VAL2

brooklyn.location.jclouds.aws-ec2.KEY=VAL3

brooklyn.location.jclouds.aws-ec2@us-west-1.KEY=VAL4

brooklyn.location.named.my-aws=jclouds:aws-ec2:us-west-1

brooklyn.location.named.my-aws.KEY=VAL5

brooklyn.location.named.my-extended-aws=named:my-aws

brooklyn.location.named.my-extended-aws.KEY=VAL6

section:	BYON	section_position:	8

section_type:	inline

BYON

"Bring-your-own-nodes"	mode	is	useful	in	production,	where	machines	have	been	provisioned	by	someone	else,	and
during	testing,	to	cut	down	provisioning	time.

Your	nodes	must	meet	the	following	prerequisites:

A	suitable	OS	must	have	been	installed	on	all	nodes
The	node	must	be	running	sshd	(or	similar)
the	brooklyn	user	must	be	able	to	ssh	to	each	node	as	root	or	as	a	user	with	passwordless	sudo	permission.	(For
more	information	on	SSH	keys,	see	here.)

To	deploy	to	machines	with	known	IP's	in	a	blueprint,	use	the	following	syntax:

location:

		byon:

				user:	brooklyn

				privateKeyFile:	~/.ssh/brooklyn.pem

				hosts:

				-	192.168.0.18

				-	192.168.0.19

Some	of	the	login	properties	as	described	above	for	jclouds	are	supported,	but	not		loginUser		(as	no	users	are
created),	and	not	any	of	the	VM	creation	parameters	such	as		minRam		and		imageId	.	(These	clearly	do	not	apply	in
the	same	way,	and	they	are	not	by	default	treated	as	constraints,	although	an	entity	can	confirm	these	where	needed.)
As	before,	if	the	brooklyn	user	and	its	default	key	are	authorized	for	the	hosts,	those	fields	can	be	omitted.

Deploying	Blueprint

162



Named	locations	can	also	be	configured	in	your		brooklyn.properties	,	using	the	format		byon:
(key=value,key2=value2)	.	For	convenience,	for	hosts	wildcard	globs	are	supported.

brooklyn.location.named.On-Prem\	Iron\	Example=byon:(hosts="10.9.1.1,10.9.1.2,produser2@10.9.2.{10,11,20-29}")

brooklyn.location.named.On-Prem\	Iron\	Example.user=produser1

brooklyn.location.named.On-Prem\	Iron\	Example.privateKeyFile=~/.ssh/produser_id_rsa

brooklyn.location.named.On-Prem\	Iron\	Example.privateKeyPassphrase=s3cr3tpassphrase

Alternatively,	you	can	create	a	specific	BYON	location	through	the	location	wizard	tool	available	within	the	web
console.	This	location	will	be	saved	as	a	catalog	entry	for	easy	reusability.

For	more	complex	host	configuration,	one	can	define	custom	config	values	per	machine.	In	the	example	below,	there
will	be	two	machines.	The	first	will	be	a	machine	reachable	on		ssh	-i	~/.ssh/brooklyn.pem	-p	8022
myuser@50.51.52.53	.	The	second	is	a	windows	machine,	reachable	over	WinRM.	Each	machine	has	also	has	a	private
address	(e.g.	for	within	a	private	network).

location:

		byon:

				hosts:

				-	ssh:	50.51.52.53:8022

						privateAddresses:	[10.0.0.1]

						privateKeyFile:	~/.ssh/brooklyn.pem

						user:	myuser

				-	winrm:	50.51.52.54:8985

						privateAddresses:	[10.0.0.2]

						password:	mypassword

						user:	myuser

						osFamily:	windows

The	BYON	location	also	supports	a	machine	chooser,	using	the	config	key		byon.machineChooser	.	This	allows	one	to
plugin	logic	to	choose	from	the	set	of	available	machines	in	the	pool.	For	example,	additional	config	could	be	supplied
for	each	machine.	This	could	be	used	(during	the	call	to		location.obtain()	)	to	find	the	config	that	matches	the
requirements	of	the	entity	being

provisioned.	See
	FixedListMachineProvisioningLocation.MACHINE_CHOOSER	.
section:	SSH	Keys	section_position:	9

section_type:	inline

SSH	Keys

SSH	keys	are	one	of	the	simplest	and	most	secure	ways	to	access	remote	servers.	They	consist	of	two	parts:

A	private	key	(e.g.		id_rsa	)	which	is	known	only	to	one	party	or	group

A	public	key	(e.g.		id_rsa.pub	)	which	can	be	given	to	anyone	and	everyone,	and	which	can	be	used	to	confirm
that	a	party	has	a	private	key	(or	has	signed	a	communication	with	the	private	key)

In	this	way,	someone	--	such	as	you	--	can	have	a	private	key,	and	can	install	a	public	key	on	a	remote	machine	(in	an
	authorized_keys		file)	for	secure	automated	access.	Commands	such	as		ssh		(and	Brooklyn)	can	log	in	without
revealing	the	private	key	to	the	remote	machine,	the	remote	machine	can	confirm	it	is	you	accessing	it	(if	no	one	else
has	the	private	key),	and	no	one	snooping	on	the	network	can	decrypt	of	any	of	the	traffic.

Deploying	Blueprint

163



Creating	an	SSH	Key

If	you	don't	have	an	SSH	key,	create	one	with:

$	ssh-keygen	-t	rsa	-N	""	-f	~/.ssh/id_rsa

Localhost	Setup

If	you	want	to	deploy	to		localhost	,	ensure	that	you	have	a	public	and	private	key,	and	that	your	key	is	authorized	for
ssh	access:

#	_Appends_	id_rsa.pub	to	authorized_keys.	Other	keys	are	unaffected.

$	cat	~/.ssh/id_rsa.pub	>>	~/.ssh/authorized_keys

Now	verify	that	your	setup	by	running	the	command:		ssh	localhost	echo	hello	world	

If	your	setup	is	correct,	you	should	see		hello	world		printed	back	at	you.

On	the	first	connection,	you	may	see	a	message	similar	to	this:

The	authenticity	of	host	'localhost	(::1)'	can't	be	established.

RSA	key	fingerprint	is	7b:e3:8e:c6:5b:2a:05:a1:7c:8a:cf:d1:6a:83:c2:ad.

Are	you	sure	you	want	to	continue	connecting	(yes/no)?

Simply	answer	'yes'	and	then	repeat	the	command	again.

If	this	isn't	the	case,	see	below.

Potential	Problems

MacOS	user?	In	addition	to	the	above,	enable	"Remote	Login"	in	"System	Preferences	>	Sharing".

Got	a	passphrase?	Set		brooklyn.location.localhost.privateKeyPassphrase		as	described	here.	If	you're	not	sure,
or	you	don't	know	what	a	passphrase	is,	you	can	test	this	by	executing		ssh-keygen	-y	.	If	it	does	not	ask	for	a
passphrase,	then	your	key	has	no	passphrase.	If	your	key	does	have	a	passphrase,	you	can	remove	it	by	running
	ssh-keygen	-p	.

Check	that	you	have	an		~/.ssh/id_rsa		file	(or		id_dsa	)	and	a	corresponding	public	key	with	a		.pub		extension;
if	not,	create	one	as	described	above

	~/.ssh/		or	files	in	that	directory	may	have	permissions	they	shouldn't:	they	should	be	visible	only	to	the	user
(apart	from	public	keys),	both	on	the	source	machine	and	the	target	machine.	You	can	verify	this	with		ls	-l
~/.ssh/	:	lines	should	start	with		-rw-------		or		-r--------		(or		-rwx------		for	directories).	If	it	does	not,	execute
	chmod	go-rwx	~/.ssh	~/.ssh/*	.

Sometimes	machines	are	configured	with	different	sets	of	support	SSL/TLS	versions	and	ciphers;	if	command-
line		ssh		and		scp		work,	but	Brooklyn/java	does	not,	check	the	versions	enabled	in	Java	and	on	both	servers.

Missing	entropy:	creating	and	using	ssh	keys	requires	randomness	available	on	the	servers,	usually	in
	/dev/random	;	see	here	for	more	information

section:	Localhost	section_position:	10

Deploying	Blueprint

164



section_type:	inline

Localhost

If	passwordless	ssh	login	to		localhost		and	passwordless		sudo		is	enabled	on	your	machine,	you	should	be	able	to
deploy	some	blueprints	with	no	special	configuration,	just	by	specifying		location:	localhost		in	YAML.

If	you	use	a	passphrase	or	prefer	a	different	key,	these	can	be	configured	as	follows:

location:

		localhost:

				privateKeyFile=~/.ssh/brooklyn_key

				privateKeyPassphrase=s3cr3tPASSPHRASE

Alternatively,	you	can	create	a	specific	localhost	location	through	the	location	wizard	tool	available	within	the	web
console.	This	location	will	be	saved	as	a	catalog	entry	for	easy	reusability.

Passwordless	Sudo

If	you	encounter	issues	or	for	more	information,	see	SSH	Keys	Localhost	Setup.

For	some	blueprints,	passwordless	sudo	is	required.	(Try	executing		sudo	whoami		to	see	if	it	prompts	for	a	password.
To	enable	passwordless		sudo		for	your	account,	a	line	must	be	added	to	the	system		/etc/sudoers		file.
To	edit	the	file,	use	the		visudo		command:

sudo	visudo

Add	this	line	at	the	bottom	of	the	file,	replacing		username		with	your	own	user:

username	ALL=(ALL)	NOPASSWD:	ALL

If	executing	the	following	command	does	not	ask	for	your	password,	then		sudo		has	been	setup	correctly:

sudo	whoami

section:	Location	Customizers	section_type:	inline

section_position:	11

Location	Customizers

Apache	Brooklyn	supports	a	number	of	ways	to	configure	and	customize	locations.	These	include	the
	JcloudsLocationCustomizer	,	which	is	for	advanced	customization	of	VM	provisioning	through	jclouds.	There	is	also	a
	MachineLocationCustomizer	,	which	allows	customization	of	machines	being	obtained	from	any	kind	of	location
(including	Bring	Your	Own	Nodes).

Usage	Guidelines

Clearly	there	is	an	overlap	for	where	things	can	be	done.	This	section	describes	the	recommended
separation	of	responsibilities.

Deploying	Blueprint

165



These	are	guidelines	only	-	users	are	obviously	free	to	make	alternative	usage	decisions	based	on	their	particular
use-cases.

Responsibilities	of	Entity	versus	Location

From	an	entity's	perspective,	it	calls		location.obtain(options)		and	gets	back	a	usable		MachineLocation		that	has	a
standard	base	operating	system	that	gives	remote	access	(e.g.	for	Linux	it	expects	credentials	for	a	user	with		sudo	
rights,	and	ssh	access).

However,	there	are	special	cases	-	for	example	the		location.obtain(options)		could	return	a	Docker	container	with
the	software	pre-installed,	and	no	remote	access	(see	the	Clocker	project	for	more	information	on	use	of	Docker	with
Brooklyn).

The	entity	is	then	responsible	for	configuring	that	machine	according	to	the	needs	of	the	software	to	be	installed.

For	example,	the	entity	may	install	software	packages,	upload/update	configuration	files,	launch	processes,	etc.

The	entity	may	also	configure		iptables	.	This	is	also	possible	through	the		JcloudsLocation		configuration.	However,	it
is	preferable	to	do	this	in	the	entity	because	it	is	part	of	configuring	the	machine	in	the	way	required	for	the	given
software	component.

The	entity	may	also	perform	custom	OS	setup,	such	as	installing	security	patches.	However,	whether	this	is
appropriate	depends	on	the	nature	of	the	security	patch:	if	the	security	patch	is	specific	to	the	entity	type,	then	it
should	be	done	within	the	entity;	but	if	it	is	to	harden	the	base	OS	to	make	it	comply	with	an	organisation's	standards
(e.g.	to	overcome	shortcomings	of	the	base	image,	or	to	install	security	patches)	then	a		MachineLocationCustomizer		is
more	appropriate.

Location	Configuration	Options

This	refers	to	standard	location	configuration:	explicit	config	keys,	and	explicit	jclouds	template	configuration	that	can
be	passed	through.

This	kind	of	configuration	is	simplest	to	use.	It	is	the	favoured	mechanism	when	it	comes	to	VM	provisioning,	and
should	be	used	wherever	possible.

Note	that	a	jclouds		TemplateBuilder		and	cloud-specific		TemplateOptions		are	the	generic	mechanisms	within	jclouds
for	specifying	the	details	of	the	compute	resource	to	be	provisioned.

Jclouds	Location	Customizer

A		JcloudsLocationCustomizer		has	customization	hooks	to	execute	code	at	the	various	points	of	building	up	the	jclouds
template	and	provisioning	the	machine.	Where	jclouds	is	being	used	and	where	the	required	use	of	jclouds	goes
beyond	simple	configuration,	this	is	an	appropriate	solution.

For	example,	there	is	a		org.apache.brooklyn.location.jclouds.networking.JcloudsLocationSecurityGroupCustomizer	
which	gives	more	advanced	support	for	setting	up	security	groups	(e.g.	in	AWS-EC2).

Machine	Customizer

The		MachineLocationCustomizer		allows	customization	of	machines	being	obtained	from	any	kind	of	location.	For
example,	this	includes	for	jclouds	and	for	Bring	Your	Own	Nodes	(BYON).

It	provides	customization	hooks	for	when	the	machine	has	been	provisioned	(before	it	is	returned	by	the	location)	and
when	the	machine	is	about	to	be	released	by	the	location.

An	example	use	would	be	to	register	(and	de-register)	the	machine	in	a	CMDB.

Deploying	Blueprint

166

http://clocker.io


Jclouds	Location	Customizers

Warning:	additional	methods	(i.e.	customization	hooks)	may	be	added	to	the		JcloudsLocationCustomizer		interface	in
future	releases.	Users	are	therefore	strongly	encouraged	to	sub-class		BasicJcloudsLocationCustomizer	,	rather	than
implementing	JcloudsLocationCustomizer	directly.

The		JcloudsLocationCustomizer		provides	customization	hooks	at	various	points	of	the	Brooklyn's	use	of	jclouds.
These	can	be	used	to	adjust	the	configuration,	to	do	additional	setup,	to	do	custom	logging,	etc.

Customize	the		org.jclouds.compute.domain.TemplateBuilder	,	before	it	is	used	to	build	the	template.	This	is	used
to	influence	the	choice	of	VM	image,	hardware	profile,	etc.	This	hook	is	not	normally	required	as	the	location
configuration	options	can	be	used	in	instead.

Customize	the		org.jclouds.compute.domain.Template	,	to	be	used	when	creating	the	machine.	This
hook	is	most	often	used	for	performing	custom	actions	-	for	example	to	create	or	modify	a	security	group	or
volume,	and	to	update	the	template's	options	to	use	that.

Customize	the		org.jclouds.compute.options.TemplateOptions		to	be	used	when	creating	the	machine.	The
	TemplateOptions		could	be	cast	to	a	cloud-specific	sub-type	(if	this	does	not	have	to	work	across	different	clouds).
Where	the	use-case	is	to	just	set	simple	configuration	on	the		TemplateOptions	,	consider	instead	using	the	config
key		templateOptions	,	which	takes	a	map	of	type	String	to	Object	-	the	strings	should	match	the	method	names	in
the		TemplateOptions	.

Customize	the		org.apache.brooklyn.location.jclouds.JcloudsMachineLocation		that	has	been	created.	For	Linux-
based	VMs,	if	the	config		waitForSshable		was	not	false,	then	this	machine	is	guaranteed	to	be	ssh'able.	Similarly
for	WinRM	access	to	Windows	machines,	if		waitForWinRmAvailable		was	not	false.

Pre-release	of	the	machine.	If	the	actions	required	are	specific	to	jclouds	(e.g.	using	jclouds	to	make	calls	to	the
cloud	provider)	then	this	should	be	used;	otherwise	one	should	use	the	more	generic		MachineLocationCustomizer	.

Post-release	of	the	machine	(i.e.	after	asking	jclouds	to	destroying	the	machine).

To	register	a		JcloudsLocationCustomizer		in	YAML,	the	config	key		customizers		can	be	used	to	provide	a	list	of
instances.	Each	instance	can	be	defined	using		$brooklyn:object		to	indicate	the	type	and	its	configuration.	For
example:

location:

		jclouds:aws-ec2:us-east-1:

				customizers:

				-	$brooklyn:object:

								type:	com.acme.brooklyn.MyJcloudsLocationCustomizer

To	register		JcloudsLocationCustomizer		instances	programmatically,	set	the	config	key
	JcloudsLocationConfig.JCLOUDS_LOCATION_CUSTOMIZERS		on	the	location,	or	pass	this	config	option	when	calling
	location.obtain(options)	.

The		SharedLocationSecurityGroupCustomizer		configures	a	shared	security	group	on	Jclouds	locations.	It	only	works	on
AWS	and	Azure	ARM.

To	register	a		SharedLocationSecurityGroupCustomizer		in	YAML,	you	can	use	the	config	key		customizers		and
configure	it	with		$brooklyn:object		and		object.fields	.	For	example:

location:

		jclouds:aws-ec2:us-east-1:

				customizers:

				-	$brooklyn:object:

								type:	org.apache.brooklyn.location.jclouds.networking.SharedLocationSecurityGroupCustomizer

								object.fields:	{locationName:	"myloc",	tcpPortRanges:	["22",	"8080",	"9443"],	udpPortRanges:	["2001",	"

4013"],	cidr:	"82.40.153.101/24"}

Deploying	Blueprint

167



where		cidr		can	be	optionally	set	to	restrict	the	range	that	the	ports	that	are	to	be	opened	can	be	accessed	from.

Machine	Location	Customizers

Warning:	additional	methods	(i.e.	customization	hooks)	may	be	added	to	the		MachineLocationCustomizer		interface	in
future	releases.	Users	are	therefore	strongly	encouraged	to	sub-class		BasicMachineLocationCustomizer	,	rather	than
implementing		MachineLocationCustomizer		directly.

The		MachineLocationCustomizer		provides	customization	hooks	for	when	a	machine	is	obtained/released	from	a
	MachineProvisioningLocation	.	The	following	hooks	are	supported:

After	the	machine	has	been	provisioned/allocated,	but	before	it	has	been	returned.

When	the	machine	is	about	to	be	released,	but	prior	to	actually	destroying/unallocating	the	machine.

To	register	a		MachineLocationCustomizer		in	YAML,	the	config	key		machineCustomizers		can	be	used
to	provide	a	list	of	instances.	Each	instance	can	be	defined	using		$brooklyn:object		to	indicate	the	type	and	its
configuration.	For	example:

location:

		jclouds:aws-ec2:us-east-1:

				machineCustomizers:

				-	$brooklyn:object:

								type:	com.acme.brooklyn.MyMachineLocationCustomizer

To	register		MachineLocationCustomizer		instances	programmatically,	set	the	config	key
	CloudLocationConfig.MACHINE_LOCATION_CUSTOMIZERS		on	the	location,	or	pass	this	config	option	when	calling
	location.obtain(options)	.

Hostname	Customizer

org.apache.brooklyn.entity.machine.SetHostnameCustomizer	Sets	the	hostname	on	an	ssh'able	machine.	Currently
only	CentOS	and	RHEL	are	supported.	The	customizer	can	be	configured	with	a	hard-coded	hostname,	or	with	a
freemarker	template	whose	value	(after	substitutions)	will	be	used	for	the	hostname.

section:	Customizing	Cloud	Security	Groups	section_position:	12

section_type:	inline

Customizing	Cloud	Security	Groups
Before	using	SharedLocationSecurityGroupCustomizer,	please	first	refer	to	Port	Inferencing.

A	security	group	is	a	named	collection	of	network	access	rules	that	are	use	to	limit	the	types	of	traffic	that	have	access
to	instances.
Security	group	is	the	standard	way	to	set	firewall	restrictions	on	the	AWS-EC2	environment.
docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

When	deploying	to	AWS	EC2	target,	by	default	Apache	Brooklyn	creates	security	group	attached	to	the	VM.	It	is	easy
to	add	additional	rules	to	the	initial	security	group	using		org.apache.brooklyn	SharedLocationSecurityGroupCustomizer	.

Deploying	Blueprint

168

https://github.com/apache/brooklyn-server/blob/master/software/base/src/main/java/org/apache/brooklyn/entity/machine/SetHostnameCustomizer.java
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html


YAML	Example:

name:	ports	@	AWS

location:	jclouds:aws-ec2:us-west-2:

services:

-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

		brooklyn.config:

				provisioning.properties:

						customizers:

						-	$brooklyn:object:

										type:	org.apache.brooklyn.location.jclouds.networking.SharedLocationSecurityGroupCustomizer

										object.fields:	{tcpPortRanges:	["900-910",	"915",	"22"],	udpPortRanges:	["100","200-300"],	cidr:	"82.

40.153.101/24"}

Make	sure	that	you	have	rule	which	makes	port	22	accessible	from	Apache	Brooklyn.

Opening	ports	during	runtime.

Apache	Brooklyn	exposes	the	SharedLocationSecurityGroupCustomizer	functionality	after	entity	is	deployed	
just	by	supplying		effector.add.openInboundPorts:	true		"brooklyn.config".	Example	configuration	in	effector

location:	jclouds:aws-ec2:us-west-2

services:

-	type:	org.apache.brooklyn.entity.software.base.EmptySoftwareProcess

		brooklyn.config:

				effector.add.openInboundPorts:	true

Known	limitations

Not	all	cloud	providers	support	Security	Group	abstraction.		SharedLocationSecurityGroupCustomizer		is	known	to	work
well	with	Amazon	EC2.
Other	clouds	which	support	Security	Groups:

Openstack
Azure	-	jclouds-labs	azurecompute	implementation	uses	endpoints	rules	when	creating	a	VM	instance.
jclouds:azurecompute	based	location	do	not	have	security	groups	so	SharedLocationSecurityGroupCustomizer	is
used	it	will	fail	to	find	a	security	group.

section:	Specialized	Locations	section_position:	13

section_type:	inline

Specialized	Locations

Some	additional	location	types	are	supported	for	specialized	situations:

Single	Host

The	spec		host	,	taking	a	string	argument	(the	address)	or	a	map	(	host	,		user	,		password	,	etc.),	provides	a
convenient	syntax	when	specifying	a	single	host.	For	example:

location:	host:(192.168.0.1)

services:

-	type:	org.apache.brooklyn.entity.webapp.jboss.JBoss7Server

Deploying	Blueprint

169



Or,	in		brooklyn.properties	,	set		brooklyn.location.named.host1=host:(192.168.0.1)	.

The	Multi	Location

The	spec		multi		allows	multiple	locations,	specified	as		targets	,	to	be	combined	and	treated	as	one	location.

Sequential	Consumption

In	its	simplest	form,	this	will	use	the	first	target	location	where	possible,	and	will	then	switch	to	the	second	and
subsequent	locations	when	there	are	no	machines	available.

In	the	example	below,	it	provisions	the	first	node	to		192.168.0.1	,	then	it	provisions	into	AWS	us-east-1	region
(because	the	bring-your-own-nodes	region	will	have	run	out	of	nodes).

location:

		multi:

				targets:

				-	byon:(hosts=192.168.0.1)

				-	jclouds:aws-ec2:us-east-1

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				cluster.initial.size:	3

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.machine.MachineEntity

Round-Robin	Consumption	and	Availability	Zones	for	Clustered	Applications

A		DynamicCluster		can	be	configured	to	cycle	through	its	deployment	targets	round-robin	when	provided	with	a
location	that	supports	the		AvailabilityZoneExtension		--	the		multi		location	supports	this	extension.

The	configuration	option		dynamiccluster.zone.enable		on		DynamicCluster		tells	it	to	query	the	given	location	for
	AvailabilityZoneExtension		support.	If	the	location	supports	it,	then	the	cluster	will	query	for	the	list	of	availability
zones	(which	in	this	case	is	simply	the	list	of	targets)	and	deploy	to	them	round-robin.

In	the	example	below,	the	cluster	will	request	VMs	round-robin	across	three	different	locations	(in	this	case,	the
locations	were	already	added	to	the	catalog,	or	defined	in		brooklyn.properties	).

location:

		multi:

				targets:

				-	my-location-1

				-	my-location-2

				-	my-location-3

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				dynamiccluster.zone.enable:	true

				cluster.initial.size:	3

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.machine.MachineEntity

Of	course,	clusters	can	also	be	deployed	round-robin	to	real	availability	zones	offered	by	cloud	providers,	as	long	as
their	locations	support		AvailabilityZoneExtension	.	Currently,	only	AWS	EC2	locations	support	this	feature.

In	the	example	below,	the	cluster	will	request	VMs	round-robin	across	the	availability	zones	provided	by	AWS	EC2	in
the	"us-east-1"	region.

Deploying	Blueprint

170



location:	jclouds:aws-ec2:us-east-1

services:

-	type:	org.apache.brooklyn.entity.group.DynamicCluster

		brooklyn.config:

				dynamiccluster.zone.enable:	true

				cluster.initial.size:	3

				dynamiccluster.memberspec:

						$brooklyn:entitySpec:

								type:	org.apache.brooklyn.entity.machine.MachineEntity

For	more	information	about	AWS	EC2	availability	zones,	see	this	guide.

Custom	alternatives	to	round-robin	are	also	possible	using	the	configuration	option
	dynamiccluster.zone.placementStrategy		on		DynamicCluster	.

The	Server	Pool

The	ServerPool	entity	type	allows	defining	an	entity	which	becomes	available	as	a	location.

Deploying	Blueprint

171

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://brooklyn.apache.org/v/latest/misc/javadoc/org/apache/brooklyn/entity/machine/pool/ServerPool.html


To	install	Apache	Brooklyn	on	a	production	server:

1.	 Set	up	the	prerequisites
2.	 Download	Apache	Brooklyn
3.	 Configuring	brooklyn.cfg
4.	 Configuring	Karaf	Security
5.	 Configuring	default.catalog.bom
6.	 Test	the	installation

This	guide	covers	the	basics.	You	may	also	wish	to	configure:

Logging
Persistence
High	availability

Set	up	the	Prerequisites

Check	that	the	server	meets	the	requirements.	Then	configure	the	server	as	follows:

install	Java	JRE	or	JDK	(version	8	or	later)
enable	"Java	Cryptography	Extension"	(already	enabled	out	of	the	box	of	OpenJDK	installs)
install	an	SSH	key,	if	not	available
if	the	"localhost"	location	will	be	used,	enable	passwordless	ssh	login
create	a		~/.brooklyn		directory	on	the	host	with		$	mkdir	~/.brooklyn	
check	your		iptables		or	other	firewall	service,	making	sure	that	incoming	connections	on	port	8443	is	not
blocked
check	that	the	linux	kernel	entropy	is	sufficient
check	that	the	ulimit	values	are	sufficiently	high
ensure	external	libraries	are	up-to-date,	including		nss		for	SSL.
ensure	the	time	is	continually	accurate,	ideally	by	running	a	service	like	the	ntp	daemon.

Download	Apache	Brooklyn

Download	Brooklyn	and	obtain	a	binary	build	as	described	on	the	download	page.

Expand	the		tar.gz		archive:

%	tar	-zxf	apache-brooklyn-{{	book.brooklyn-stable-version	}}-dist.tar.gz

This	will	create	a		apache-brooklyn-{{	book.brooklyn-stable-version	}}		folder.

Let's	setup	some	paths	for	easy	commands.

%	cd	apache-brooklyn-{{	book.brooklyn-stable-version	}}

%	BROOKLYN_DIR="$(pwd)"

%	export	PATH=$PATH:$BROOKLYN_DIR/bin/

Configuring	brooklyn.cfg

Set	up		brooklyn.cfg		as	described	here:

Configure	the	users	who	should	have	access
Turn	on	HTTPS
Supply	credentials	for	any	pre-defined	clouds

Production	Installation

172

http://www.ntp.org/


Configuring	Karaf	Security

Out	of	the	box,	Apache	Brooklyn	includes	the	default	Karaf	security	configuration.	This	configuration	is	used	to
manage	connections	to	the	ssh	port	of	Karaf	(which	is	available	to	localhost	connections	only).	It	is	recommended	that
you	update	the	credentials	as	detailed	in	the	Karaf	Security	page.

Configuring	the	Catalog

By	default	Brooklyn	loads	the	catalog	of	available	application	components	and	services	from		default.catalog.bom		on
the	classpath.	The	initial	catalog	is	in		conf/brooklyn/		in	the	dist.	If	you	have	a	preferred	catalog,	simply	replace	that
file.

More	information	on	the	catalog	is	available	here.

Confirm	Installation

Launch	Brooklyn	in	a	disconnected	session	so	it	will	remain	running	after	you	have	logged	out:

%	nohup	bin/brooklyn	launch	>	/dev/null	2&>1	&

Apache	Brooklyn	should	now	be	running	on	port	8081	(or	other	port	if	so	specified).

To	install	on	a	different	port	edit	config	in		etc/org.ops4j.pax.web.cfg	.

Production	Installation

173

https://karaf.apache.org/manual/latest/security#_users_groups_roles_and_passwords


NOTE:	This	document	is	for	information	on	starting	an	Apache	Brooklyn	Server.	For	information	on	using	the	Brooklyn
Client	CLI	to	access	an	already	running	Brooklyn	Server,	refer	to	Client	CLI	Reference.

Packages	for	RHEL/CentOS	and	Ubuntu
If	you	are	using	the		.rpm		or		.deb		package	of	Apache	Brooklyn,	then	Brooklyn	will	integrate	with	your	OS	service
management.	Commands	such	as		service	brooklyn	start		will	work	as	expected,	and	Brooklyn's	PID	file	will	be
stored	in	the	normal	location	for	your	OS,	such	as		/var/run/brooklyn.pid	.

Platform-independent	distributions
The	platform-independent	distributions	are	packaged	in		.tar.gz		and		.zip		files.

Starting

To	launch	Brooklyn,	from	the	directory	where	Brooklyn	is	unpacked,	run:

%	bin/start

With	no	configuration,	this	will	launch	the	Brooklyn	web	console	and	REST	API	on		http://localhost:8081/	,	listening
on	all	network	interfaces.	No	credentials	are	required	by	default.	It	is	strongly	recommended	to	configure	security.

See	the	Server	CLI	Reference	for	more	information	about	the	Brooklyn	server	process.

Stopping

To	stop	Brooklyn,	from	the	directory	where	Brooklyn	is	unpacked,	run:

For	example:

%	bin/stop

{%	endhighlight	bash	%}

##	Monitoring

For	`.tar.gz`	and	`.zip`	distributions	of	Brooklyn,	the	Brooklyn	startup	script

will	create	a	file	name	`pid_java`	at	the	root	of	the	Brooklyn	directory,	which

contains	the	PID	of	the	last	Brooklyn	process	to	be	started.	You	can	examine

this	file	to	discover	the	PID,	and	then	test	that	the	process	is	still	running.

`.rpm`	and	`.deb`	distributions	of	Brooklyn	will	use	the	normal	mechanism	that

your	OS	uses,	such	as	writing	to	`/var/run/brooklyn.pid`.

This	should	lead	to	a	fairly	straightforward	integration	with	many	monitoring

tools	-	the	monitoring	tool	can	discover	the	expected	PID,	and	can	execute	the

start	or	stop	commands	shown	above	as	necessary.

For	example,	here	is	a	fragment	of	a	`monitrc`	file	as	used	by

[Monit](https://mmonit.com/monit/),	for	a	Brooklyn	`.tar.gz`	distribution

unpacked	and	installed	at	`/opt/apache-brooklyn`:

```text

check	process	apachebrooklyn	with	pidfile	/opt/apache-brooklyn/pid_java

				start	program	=	"/bin/bash	-c	'/opt/apache-brooklyn/bin/brooklyn	launch	--persist	auto	&	disown'"	with	time

out	10	seconds

				stop		program	=	"/bin/bash	-c	'kill	$(cat	/opt/apache-brooklyn/pid_java)'"

Starting,	Stopping	and	Monitoring

174

http://localhost:8081/

In	addition	to	monitoring	the	Brooklyn	process	itself,	you	will	almost	certainly	want	to	monitor	resource	usage	of
Brooklyn.	In	particular,	please	see	the	Requirements	section	for	a	discussion	on	Brooklyn's	disk	space	requirements.

Starting,	Stopping	and	Monitoring

175

NOTE:	This	document	is	for	information	on	starting	a	Brooklyn	Server.	For	information	on	using	the	Brooklyn	Client
CLI	to	access	an	already	running	Brooklyn	Server,	refer	to	Client	CLI	Reference.

Launch	command
To	launch	Brooklyn,	from	the	directory	where	Brooklyn	is	unpacked,	run:

%	nohup	bin/brooklyn	launch	>	/dev/null	2>&1	&

With	no	configuration,	this	will	launch	the	Brooklyn	web	console	and	REST	API	on		http://localhost:8081/	,	listening
on	all	network	interfaces.	No	credentials	are	required	by	default.	For	a	production	system,	or	if	Apache	Brooklyn	is
publicly	reachable,	it	is	strongly	recommended	to	configure	security.

By	default,	Brooklyn	will	write	log	messages	at	the	INFO	level	or	above	to		brooklyn.info.log		and	messgages	at	the
DEBUG	level	or	above	to		brooklyn.debug.log	.	Redirecting	the	output	to		/dev/null		prevents	the	default	console
output	being	written	to		nohup.out	.

You	may	wish	to	add	Brooklyn	to	your	path;	assuming	you've	done	this,	to	get	information	the	supported	CLI	options
at	any	time,	just	run		brooklyn	help	:

%	bin/brooklyn	help

usage:	brooklyn	[(-q	|	--quiet)]	[(-v	|	--verbose)]	<command>	[<args>]

The	most	commonly	used	brooklyn	commands	are:

				help					Display	help	information	about	brooklyn

				info					Display	information	about	brooklyn

				launch			Starts	a	brooklyn	application.	Note	that	a	BROOKLYN_CLASSPATH	environment	variable	needs	to	be	set

	up	beforehand	to	point	to	the	user	application	classpath.

See	'brooklyn	help	<command>'	for	more	information	on	a	specific	command.

It	is	important	that	Brooklyn	is	launched	with	either		nohup	...	&		or		...	&	disown	,	to	ensure	it	keeps	running	after	the
shell	terminates.

Other	Server	CLI	Arguments

The	Server	CLI	arguments	for	persistence	and	HA	and	the	catalog	are	described	separately.

Path	Setup

In	order	to	have	easy	access	to	the	server	cli	it	is	useful	to	configure	the	PATH	environment	variable	to	also	point	to
the	cli's	bin	directory:

BROOKLYN_HOME=/path/to/brooklyn/

export	PATH=$PATH:$BROOKLYN_HOME/usage/dist/target/brooklyn-dist/bin/

Memory	Usage

The	amount	of	memory	required	by	the	Brooklyn	process	depends	on	the	usage	--	for	example	the	number	of
entities/VMs	under	management.

Server	CLI	Reference

176

http://localhost:8081/

For	a	standard	Brooklyn	deployment,	the	defaults	are	to	start	with	256m,	and	to	grow	to	1g	of	memory.	These
numbers	can	be	overridden	by	setting	the	environment	variable		JAVA_OPTS		before	launching	the		brooklyn	script	,	as
follows:

JAVA_OPTS="-Xms1g	-Xmx4g"

(On	Java	8	and	later	the	last	entry	has	no	effect	and	can	be	dropped.)

Brooklyn	stores	a	task	history	in-memory	using	soft	references.	This	means	that,	once	the	task	history	is	large,
Brooklyn	will	continually	use	the	maximum	allocated	memory.	It	will	only	expunge	tasks	from	memory	when	this	space
is	required	for	other	objects	within	the	Brooklyn	process.

See	Memory	Usage	for	more	information	on	memory	usage	and	other	suggested		JAVA_OPTS	.

Web	Console	Bind	Address

The	web	console	will	by	default	bind	to	0.0.0.0.	It's	restricted	to	127.0.0.1	if	the		--noConsoleSecurity		flag	is	used.	To
specify	a	local	interface,	or	use	the	local	loopback	(127.0.0.1),	for	the	web	console	to	bind	to	you	should	use:

--bindAddress	<IP>

Configuration

Configuration	Files

Brooklyn	reads	configuration	from	a	variety	of	places.	It	aggregates	the	configuration.	The	list	below	shows	increasing
precedence	(i.e.	the	later	ones	will	override	values	from	earlier	ones,	if	exactly	the	same	property	is	specified	multiple
times).

1.	 	classpath://brooklyn/location-metadata.properties		is	shipped	as	part	of	Brooklyn,	containing	generic	metadata
such	as	jurisdiction	and	geographic	information	about	Cloud	providers.

2.	 The	file		~/.brooklyn/location-metadata.properties		(unless		--noGlobalBrooklynProperties		is	specified).	This	is
intended	to	contain	custom	metadata	about	additional	locations.

3.	 The	file		brooklyn.cfg		(unless		--noGlobalBrooklynProperties		is	specified).
4.	 Another	properties	file,	if	the		--localBrooklynProperties	<local	brooklyn.properties	file>		is	specified.
5.	 Shell	environment	variables
6.	 System	properties,	supplied	with		-D		on	the	brooklyn	(Java)	command-line.

These	properties	are	described	in	more	detail	here.

Extending	the	Classpath

The	default	Brooklyn	directory	structure	includes:

	./conf/	:	for	configuration	resources.
	./lib/patch/	:	for	Jar	files	containing	patches.
	./lib/brooklyn/	:	for	the	brooklyn	libraries.
	./lib/dropins/	:	for	additional	Jars.

Resources	added	to		conf/		will	be	available	on	the	classpath.

A	patch	can	be	applied	by	adding	a	Jar	to	the		lib/patch/		directory,	and	restarting	Brooklyn.	All	jars	in	this	directory
will	be	at	the	head	of	the	classpath.

Server	CLI	Reference

177

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/SoftReference.html

Additional	Jars	should	be	added	to		lib/dropins/	,	prior	to	starting	Brooklyn.	These	jars	will	be	at	the	end	of	the
classpath.

The	initial	classpath,	as	set	in	the		brooklyn		script,	is:

conf:lib/patch/*:lib/brooklyn/*:lib/dropins/*

Additional	entries	can	be	added	at	the	head	of	the	classpath	by	setting	the	environment	variable		BROOKLYN_CLASSPATH	
before	running	the		brooklyn		script.

Replacing	the	web-console

Work	in	progress.

The	Brooklyn	web-console	is	loaded	from	the	classpath	as	the	resource		classpath://brooklyn.war	.

To	replace	this,	an	alternative	WAR	with	that	name	can	be	added	at	the	head	of	the	classpath.	However,	this
approach	is	likely	to	change	in	a	future	release	-	consider	this	feature	as	"beta".

Cloud	Explorer
The		brooklyn		command	line	tool	includes	support	for	querying	(and	managing)	cloud	compute	resources	and	blob-
store	resources.

For	example,		brooklyn	cloud-compute	list-instances	--location	aws-ec2:eu-west-1		will	use	the	AWS	credentials	from
	brooklyn.properties		and	list	the	VM	instances	running	in	the	given	EC2	region.

Use		brooklyn	help		and		brooklyn	help	cloud-compute		to	find	out	more	information.

This	functionality	is	not	intended	as	a	generic	cloud	management	CLI,	but	instead	solves	specific	Brooklyn	use-cases.
The	main	use-case	is	discovering	the	valid	configuration	options	on	a	given	cloud,	such	as	for		imageId		and
	hardwareId	.

Cloud	Compute

The	command		brooklyn	cloud-compute		has	the	following	options:

	list-images	:	lists	VM	images	within	the	given	cloud,	which	can	be	chosen	when	provisioning	new	VMs.	This	is
useful	for	finding	the	possible	values	for	the		imageId		configuration.

	get-image	<imageId1>	<imageId2>	...	:	retrieves	metadata	about	the	specific	images.

	list-hardware-profiles	:	lists	the	ids	and	the	details	of	the	hardware	profiles	available	when	provisioning.	This	is
useful	for	finding	the	possible	values	for	the		hardwareId		configuration.

	default-template	:	retrieves	metadata	about	the	image	and	hardware	profile	that	will	be	used	by	Brooklyn	for	that
location,	if	no	additional	configuration	options	are	supplied.

	list-instances	:	lists	the	VM	instances	within	the	given	cloud.

	terminate-instances	<instanceId1>	<instanceId2>	...	:	Terminates	the	instances	with	the	given	ids.

Blob	Store

The	command		brooklyn	cloud-blobstore		is	used	to	access	a	given	object	store,	such	as	S3	or	Swift.	It	has	the
following	options:

Server	CLI	Reference

178

	list-containers	:	lists	the	containers	(i.e.	buckets	in	S3	terminology)	within	the	given	object	store.

	list-container	<containerName>	:	lists	all	the	blobs	(i.e.	objects)	contained	within	the	given	container.

	blob	--container	<containerName>	--blob	<blobName>	:	retrieves	the	given	blob	(i.e.	object),	including	metadata
and	its	contents.

Server	CLI	Reference

179

NOTE:	These	documents	are	for	using	the	Brooklyn	Client	CLI	tool	to	access	a	running	Brooklyn	Server.	For
information	on	starting	on	a	Brooklyn	Server,	refer	to	Server	CLI	Reference.

Obtaining	the	CLI	tool
A	selection	of	distributions	of	the	CLI	tool,		br	,	are	available	to	download	from	the	download	site	here:

Windows
Linux
OSX

Alternatively	the	CLI	tool	is	available	as	an	executable	binary	for	many	more	platforms	in	the	Apache	Brooklyn
distribution,	under		bin/brooklyn-client-cli/	,	with	each	build	in	its	own	subdirectory:

Mac:		darwin.amd64/	
Windows	32-bit:		windows.386/	
Windows	64-bit:		windows.amd64/	
Linux	32-bit:		linux.386/	
Linux	64-bit:		linux.amd64/	

The	binary	is	completely	self-contained	so	you	can	either	copy	it	to	your		bin/		directory	or	add	the	appropriate
directory	above	to	your	path:

PATH=$PATH:$HOME/apache-brooklyn/bin/brooklyn-client-cli/linux.amd64/

Documentation

Client	CLI	Reference

180

https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN-client-cli-windows.zip
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN-client-cli-linux.tar.gz
https://www.apache.org/dyn/closer.lua/brooklyn/apache-brooklyn-NaN-client-cli-macosx.tar.gz

This	guide	will	walk	you	through	connecting	to	the	Brooklyn	Server	Graphical	User	Interface	and	performing	various
tasks.

For	an	explanation	of	common	Brooklyn	Concepts	see	the	Brooklyn	Concepts	Quickstart	or	see	the	full	guide	in	the
Brooklyn	Concepts	chapter	of	the	User	Guide.

This	guide	assumes	that	you	are	using	Linux	or	Mac	OS	X	and	that	Brooklyn	Server	will	be	running	on	your	local
system.

Launch	Apache	Brooklyn
If	you	haven't	already	done	so,	you	will	need	to	start	Brooklyn	Server	using	the	commands	shown	below.
It	is	not	necessary	at	this	time,	but	depending	on	what	you	are	going	to	do,	you	may	wish	to	set	up	some	other
configuration	options	first,

Security
Persistence

Now	start	Brooklyn	with	the	following	command:

$	cd	apache-brooklyn-{{	book.brooklyn.version	}}

$	bin/brooklyn	launch

Please	refer	to	the	Server	CLI	Reference	for	details	of	other	possible	command	line	options.

Brooklyn	will	output	the	address	of	the	management	interface:

INFO		Starting	Brooklyn	web-console	with	no	security	options	(defaulting	to	no	

authentication),	on	bind	address	

INFO		Started	Brooklyn	console	at	http://127.0.0.1:8081/,	running	

classpath://brooklyn.war@

INFO		Persistence	disabled

INFO		High	availability	disabled

INFO		Launched	Brooklyn;	will	now	block	until	shutdown	command	received	via	GUI/API	

(recommended)	or	process	interrupt.

Notice!	Before	launching	Apache	Brooklyn,	please	check	the		date		on	the	local	machine.	Even	several	minutes
before	or	after	the	actual	time	could	cause	problems.

Connect	with	Browser
Next,	open	the	web	console	on	http://127.0.0.1:8081.	No	applications	have	been	deployed	yet,	so	the	"Create
Application"	dialog	opens	automatically.

Launching

181

http://127.0.0.1:8081

Next
The	next	section	will	show	how	to	deploy	a	blueprint.

Launching

182

Launching	from	a	Blueprint
When	you	first	access	the	web	console	on	http://127.0.0.1:8081	you	will	be	requested	to	create	your	first	application.

We'll	start	by	deploying	an	application	via	a	YAML	blueprint	consisting	of	the	following	layers.

MySQL	DB
Dynamic	web	application	cluster

Nginx	load	balancer
Tomcat	app	server	cluster

Switch	to	the	YAML	tab	and	copy	the	blueprint	below	into	the	large	text	box.

But	before	you	submit	it,	modify	the	YAML	to	specify	the	location	where	the	application	will	be	deployed.

name:	My	Web	Cluster

location:

		jclouds:aws-ec2:

				identity:	ABCDEFGHIJKLMNOPQRST

				credential:	s3cr3tsq1rr3ls3cr3tsq1rr3ls3cr3tsq1rr3l

services:

-	type:	org.apache.brooklyn.entity.webapp.ControlledDynamicWebAppCluster

		name:	My	Web

		id:	webappcluster

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				java.sysprops:

						brooklyn.example.db.url:	>

								$brooklyn:formatString("jdbc:%s%s?user=%s&password=%s",

								component("db").attributeWhenReady("datastore.url"),

								"visitors",	"brooklyn",	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password"))

Deploying	Blueprints

183

http://127.0.0.1:8081

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		name:	My	DB

		id:	db

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://bit.ly/brooklyn-visitors-creation-script

Replace	the		location:		element	with	values	for	your	chosen	target	environment,	for	example	to	use	SoftLayer	rather
than	AWS	(updating	with	your	own	credentials):

location:

		jclouds:softlayer:

				identity:	ABCDEFGHIJKLMNOPQRST

				credential:	s3cr3tsq1rr3ls3cr3tsq1rr3ls3cr3tsq1rr3l

NOTE:	See	Locations	in	the	Operations	section	of	the	User	Guide	for	instructions	on	setting	up	alternate	cloud
providers,	bring-your-own-nodes,	or	localhost	targets,	and	storing	credentials/locations	in	a	file	on	disk	rather	than	in
the	blueprint.

With	the	modified	YAML	in	the	dialog,	click	"Finish".	The	dialog	will	close	and	Brooklyn	will	begin	deploying	your
application.	Your	application	will	be	shown	as	"Starting"	on	the	web	console's	front	page.

Depending	on	your	choice	of	location	it	may	take	some	time	for	the	application	nodes	to	start,	the	next	page	describes
how	you	can	monitor	the	progress	of	the	application	deployment	and	verify	its	successful	deployment.

Launching	from	the	Catalog
Instead	of	pasting	the	YAML	blueprint	each	time,	it	can	be	added	to	the	Brooklyn	Catalog	where	it	will	be	accessible
from	the	Catalog	tab	of	the	Create	Application	dialog.

Deploying	Blueprints

184

See	Catalog	in	the	Operations	section	of	the	User	Guide	for	instructions	on	creating	a	new	Catalog	entry	from	your
Blueprint	YAML.

Next
So	far	we	have	touched	on	Brooklyn's	ability	to	deploy	an	application	blueprint	to	a	cloud	provider.
The	next	section	will	show	how	to	Monitor	and	Manage	Applications.

Deploying	Blueprints

185

From	the	Home	page,	click	on	the	application	name	or	open	the	Applications	tab.

We	can	explore	the	management	hierarchy	of	the	application,	which	will	show	us	the	entities	it	is	composed	of.
Starting	from	the	application	use	the	arrows	to	expand	out	the	list	of	entities,	or	hover	over	the	arrow	until	a	menu
popup	is	displayed	so	that	you	can	select		Expand	All	.

My	Web	Cluster	(A		BasicApplication)
My	DB	(A		MySqlNode)
My	Web	(A		ControlledDynamicWebAppCluster)

Cluster	of	TomcatServer	(A		DynamicWebAppCluster)
quarantine	(A		QuarantineGroup)
TomcatServer	(A		TomcatServer)

NginxController	(An		NginxController)

Clicking	on	the	"My	Web	Cluster"	entity	will	show	the	"Summary"	tab,	giving	a	very	high	level	of	what	that	component
is	doing.	Click	on	each	of	the	child	components	in	turn	for	more	detail	on	that	component.	Note	that	the	cluster	of	web
servers	includes	a	"quarantine	group",	to	which	members	of	the	cluster	that	fail	will	be	added.	These	are	excluded
from	the	load-balancer's	targets.

Activities
The	Activity	tab	allows	us	to	drill	down	into	the	tasks	each	entity	is	currently	executing	or	has	recently	completed.	It	is
possible	to	drill	down	through	all	child	tasks,	and	view	the	commands	issued,	along	with	any	errors	or	warnings	that
occurred.

For	example	clicking	on	the	NginxController	in	the	left	hand	tree	and	opening	its	Activity	tab	you	can	observe	the	'start'
task	is	'In	progress'.

Note:	You	may	observe	different	tasks	depending	on	how	far	your	deployment	has	progressed).

Monitoring	and	Managing	Applications

186

Clicking	on	the	'start'	task	you	can	discover	more	details	on	the	actions	being	carried	out	by	that	task	(a	task	may
consist	of	additional	subtasks).

Monitoring	and	Managing	Applications

187

Continuing	to	drill	down	into	the	'In	progress'	tasks	you	will	eventually	reach	the	currently	active	task	where	you	can
investigate	the	ssh	command	executed	on	the	target	node	including	the	current	stdin,	stdout	and	stderr	output.

Sensors
Now	click	on	the	"Sensors"	tab:	these	data	feeds	drive	the	real-time	picture	of	the	application.	As	you	navigate	in	the
tree	at	the	left,	you	can	see	more	targeted	statistics	coming	in	in	real-time.

Explore	the	sensors	and	the	tree	to	find	the	URL	where	the	NginxController	for	the	webapp	we	just	deployed	is
running.	This	can	be	found	in	'My	Web	Cluster	->	My	Web	->	NginxController	->	main.uri'.

Quickly	return	to	the	‘Brooklyn	JS	REST	client’	web	browser	tab	showing	the	"Sensors"	and	observe	the	'My	Web
Cluster	->	My	Web	->	Cluster	of	TomcatServer	->	webapp.reqs.perSec.last'	sensor	value	increase.

Stopping	the	Application
To	stop	an	application,	select	the	application	in	the	tree	view	(the	top/root	entity),	click	on	the	Effectors	tab,	and	invoke
the	"Stop"	effector.	This	will	cleanly	shutdown	all	components	in	the	application	and	return	any	cloud	machines	that
were	being	used.

Monitoring	and	Managing	Applications

188

Next
Brooklyn's	real	power	is	in	using	Policies	to	automatically	manage	applications.

Monitoring	and	Managing	Applications

189

Exploring	and	Testing	Policies
To	see	an	example	of	policy	based	management,	please	deploy	the	following	blueprint	(changing	the	location	details
as	for	the	example	shown	earlier):

name:	My	Web	Cluster

location:	localhost

services:

-	type:	org.apache.brooklyn.entity.webapp.ControlledDynamicWebAppCluster

		name:	My	Web

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				java.sysprops:

						brooklyn.example.db.url:	>

								$brooklyn:formatString("jdbc:%s%s?user=%s&password=%s",

								component("db").attributeWhenReady("datastore.url"),

								"visitors",	"brooklyn",	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password"))

		brooklyn.policies:

		-	type:	org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy

				brooklyn.config:

						metric:	webapp.reqs.perSec.windowed.perNode

						metricLowerBound:	0.1

						metricUpperBound:	10

						minPoolSize:	1

						maxPoolSize:	4

						resizeUpStabilizationDelay:	10s

						resizeDownStabilizationDelay:	1m

-	type:	org.apache.brooklyn.entity.database.mysql.MySqlNode

		id:	db

		name:	My	DB

		brooklyn.config:

				creation.script.password:	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")

				datastore.creation.script.url:	https://bit.ly/brooklyn-visitors-creation-script

The	app	server	cluster	has	an		AutoScalerPolicy	,	and	the	loadbalancer	has	a		targets		policy.

Use	the	Applications	tab	in	the	web	console	to	drill	down	into	the	Policies	section	of	the
ControlledDynamicWebAppCluster.	You	will	see	that	the		AutoScalerPolicy		is	running.

This	policy	automatically	scales	the	cluster	up	or	down	to	be	the	right	size	for	the	cluster's	current	load.	One	server	is
the	minimum	size	allowed	by	the	policy.

The	loadbalancer's		targets		policy	ensures	that	the	loadbalancer	is	updated	as	the	cluster	size	changes.

Sitting	idle,	this	cluster	will	only	contain	one	server,	but	you	can	use	a	tool	like	jmeter	pointed	at	the	nginx	endpoint	to
create	load	on	the	cluster.	Download	a	jmeter	test	plan	here.

As	load	is	added,	Apache	Brooklyn	requests	a	new	cloud	machine,	creates	a	new	app	server,	and	adds	it	to	the
cluster.	As	load	is	removed,	servers	are	removed	from	the	cluster,	and	the	infrastructure	is	handed	back	to	the	cloud.

Under	the	Covers

Using	Policies

190

http://jmeter.apache.org/
https://github.com/apache/brooklyn-library/blob/master/examples/simple-web-cluster/resources/jmeter-test-plan.jmx

The		AutoScalerPolicy		here	is	configured	to	respond	to	the	sensor	reporting	requests	per	second	per	node,	invoking
the	default		resize		effector.	By	clicking	on	the	policy,	you	can	configure	it	to	respond	to	a	much	lower	threshhold	or
set	long	stabilization	delays	(the	period	before	it	scales	out	or	back).

An	even	simpler	test	is	to	manually	suspend	the	policy,	by	clicking	"Suspend"	in	the	policies	list.	You	can	then	switch
to	the	"Effectors"	tab	and	manually	trigger	a		resize	.	On	resize,	new	nodes	are	created	and	configured,	and	in	this
case	a	policy	on	the	nginx	node	reconfigures	nginx	whenever	the	set	of	active	targets	changes.

Next
This	guide	has	given	a	quick	overview	of	using	the	Apache	Brooklyn	GUI	to	deploy,	monitor	and	manage	applications.
The	GUI	also	allows	you	to	perform	various	Advanced	management	tasks	and	to	explore	and	use	the	REST	API	(from
the	Script	tab).	Please	take	some	time	now	to	become	more	familiar	with	the	GUI.

Then	continue	to	read	through	the	Operations	Guide.

Using	Policies

191

Apache	Brooklyn	exposes	a	powerful	REST	API,	allowing	it	to	be	scripted	from	bash	or	integrated	with	other	systems.

For	many	commands,	the	REST	call	follows	the	same	structure	as	the	web	console	URL	scheme,	but	with	the		#		at
the	start	of	the	path	removed;	for	instance	the	catalog	item		cluster		in	the	web	console	is	displayed	at:

http://localhost:8081/#v1/catalog/entities/cluster:0.13.0-SNAPSHOT

And	in	the	REST	API	it	is	accessed	at:

http://localhost:8081/v1/catalog/entities/cluster:0.13.0-SNAPSHOT

A	full	reference	for	the	REST	API	is	automatically	generated	by	the	server	at	runtime.	It	can	be	found	in	the	Brooklyn
web	console,	under	the	Script	tab.

Here	we	include	some	of	the	most	common	REST	examples	and	other	advice	for	working	with	the	REST	API.

Tooling	Tips

For	command-line	access,	we	recommend		curl	,	with	tips	below.

For	navigating	in	a	browser	we	recommend	getting	a	plugin	for	working	with	REST;	these	are	available	for	most
browsers	and	make	it	easier	to	authenticate,	set	headers,	and	see	JSON	responses.

For	manipulating	JSON	responses	on	the	command-line,	the	library		jq		from	stedolan's	github	is	very	useful,	and
available	in	most	package	repositories,	including		port		and		brew		on	Mac.

Common	REST	Examples

Here	are	some	useful	snippets:

List	applications

curl	http://localhost:8081/v1/applications

Deploy	an	application	from		__FILE__	

curl	http://localhost:8081/v1/applications	--data-binary	@__FILE__

Get	details	of	a	task	with	ID		__ID__		(where	the		id		is	returned	by	the	above,	optionally	piped	to		jq	.id)

curl	http://localhost:8081/v1/activities/__ID__

Get	the	value	of	sensor		service.state		on	entity		e1		in	application		app1		(note	you	can	use	either	the	entity's	ID
or	its	name)

curl	http://localhost:8081/v1/applications/app1/entities/e1/sensors/service.state

Get	all	sensor	values	(using	the	pseudo-sensor		current-state)

curl	http://localhost:8081/v1/applications/app1/entities/e1/sensors/service.state

Invoke	an	effector		eff		on		e1	,	with	argument		arg1		equal	to		hi		(note	if	no	arguments,	you	must	specify		-d
""	;	for	multiple	args,	just	use	multiple		-d		entries,	or	a	JSON	file	with		--data-binary	@...)

REST	API

192

https://stedolan.github.io/jq/

curl	http://localhost:8081/v1/applications/app1/entities/e1/effectors/eff	-d	arg1=hi

Add	an	item	to	the	catalog	from		__FILE__	

curl	http://localhost:8081/v1/catalog	--data-binary	@__FILE__

Curl	Cheat	Sheet

if	authentication	is	required,	use		--user	username:password	
to	see	detailed	output,	including	headers,	code,	and	errors,	use		-v	
where	the	request	is	not	a	simple	HTTP	GET,	use		-X	POST		or		-X	DELETE	
to	pass	key-value	data	to	a	post,	use		-d	key=value	
where	you	are	posting	from	a	file		__FILE__	,	use		--data-binary	@__FILE__		(implies	a	POST)	or		-T	__FILE__	-X
POST	

to	add	a	header,	use		-H	"key:	value"	,	for	example		-H	"Brooklyn-Allow-Non-Master-Access:	true"	
to	specify	that	a	specific	content-type	is	being	uploaded,	use		-H	"Content-Type:	application/json"		(or
	application/yaml)
to	specify	the	content-type	required	for	the	result,	use		-H	"Accept:	application/json"		(or		application/yaml	,	or
for	sensor	values,		text/plain)

REST	API

193

Apache	Brooklyn	contains	a	number	of	configuration	options	managed	across	several	files.	Historically	Brooklyn	has
been	configured	through	a	brooklyn.properties	file,	this	changed	to	a	brooklyn.cfg	file	when	the	Karaf	release	became
the	default	in	Brooklyn	0.12.0.

The	configurations	for	persistence	and	high	availability	are	described	elsewhere	in	this	manual.

Configuration	of	Apache	Brooklyn	when	running	under	Karaf	is	largely	done	through	standard	Karaf	mechanisms.	The
Karaf	"Configuration	Admin"	subsystem	is	used	to	manage	configuration	values	loaded	at	first	boot	from	the		.cfg	
files	in	the		etc		directory	of	the	distribution.	In	the	Karaf	command	line	these	can	then	be	viewed	and	manipulated	by
the		config:		commands,	see	the	Karaf	documentation	for	full	details.

Configuring	Brooklyn	Properties
To	configure	the	Brooklyn	runtime	create	an		etc/brooklyn.cfg		file.	If	you	have	previously	used		brooklyn.properties	
it	follows	the	same	file	format.	Values	can	be	viewed	and	managed	dynamically	via	the	OSGI	configuration	admin
commands	in	Karaf,	e.g.		config:property-set	.	The	global		~/.brooklyn/brooklyn.properties		is	still	supported	and	has
higher	priority	for	duplicate	keys,	but	it's	values	can't	be	manipulated	with	the	Karaf	commands,	so	its	use	is
discouraged.

You	can	use	the	standard		~/.brooklyn/brooklyn.properties		file	to	configure	Brooklyn.	Alternatively	create
	etc/brooklyn.cfg		inside	the	distribution	folder	(same	file	format).	The	keys	in	the	former	override	those	in	the	latter.

Web	console	related	configuration	is	done	through	the	corresponding	Karaf	mechanisms:

The	port	is	set	in		etc/org.ops4j.pax.web.cfg	,	key		org.osgi.service.http.port	.
For	authentication	the	JAAS	realm	"webconsole"	is	used;	by	default	it	will	use	any	SecurityProvider
implementations	configured	in	Brooklyn	falling	back	to	auto	generating	the	password.	To	configure	a	custom
JAAS	realm	see	the		jetty.xml		file	in		brooklyn-server/karaf/jetty-config/src/main/resources		and	override	it	by
creating	a	custom	one	in		etc		folder.	Point	the	"webconsole"	login	service	to	the	JAAS	realm	you	would	like	to
use.

For	other	Jetty	related	configuration	consult	the	Karaf	and	pax-web	docs.

Memory	Usage

The	amount	of	memory	required	by	Apache	Brooklyn	process	depends	on	the	usage	-	for	example	the	number	of
entities/VMs	under	management.

For	a	standard	Brooklyn	deployment,	the	defaults	are	to	start	with	256m,	and	to	grow	to	2g	of	memory.	These
numbers	can	be	overridden	by	setting	the		JAVA_MAX_MEM		and		JAVA_MAX_PERM_MEM		in	the		bin/setenv		script:

export	JAVA_MAX_MEM="2G"

Apache	Brooklyn	stores	a	task	history	in-memory	using	soft	references.	This	means	that,	once	the	task	history	is
large,	Brooklyn	will	continually	use	the	maximum	allocated	memory.	It	will	only	expunge	tasks	from	memory	when	this
space	is	required	for	other	objects	within	the	Brooklyn	process.

Authentication	and	Security

There	are	two	areas	of	authentication	used	in	Apache	Brooklyn,	these	are	as	follows:

Karaf	authentication

Apache	Brooklyn	uses	Apache	Karaf	as	a	core	platform,	this	has	user	level	security	and	groups	which	can	be
configured	as	detailed	here.

Brooklyn	Configuration	and	Options

194

https://karaf.apache.org/manual/latest/
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/SoftReference.html
https://karaf.apache.org
https://karaf.apache.org/manual/latest/security#_users_groups_roles_and_passwords

Apache	Brooklyn	authentication

Users	and	passwords	for	Brooklyn	can	be	configured	in	the	brooklyn.cfg	as	detailed	here.

HTTPS	Configuration

See	HTTPS	Configuration	for	general	information	on	configuring	HTTPS.

<!--
--	NOTE:	comment	out	this	section	on	catalog	as	the	behaviour	described	is	not	enabled	by	default	since

--	https://github.com/apache/brooklyn-server/pull/233;	re-
enable	this	when	that	changes

Catalog	in	Karaf
With	the	traditional	launcher,	Brooklyn	loads	the	initial	contents	of	the	catalog	from	a		default.catalog.bom		file	as
described	in	the	section	on	installation.	Brooklyn	finds	Java	implementations	to	provide	for	certain	things	in	blueprints
(entities,	enrichers	etc.)	by	scanning	the	classpath.

In	the	OSGI	world	this	approach	is	not	used,	as	each	bundle	only	has	visibility	of	its	own	and	its	imported	Java
packages.	Instead,	in	Karaf,	each	bundle	can	declare	its	own		catalog.bom		file,	in	the	root	of	the	bundle,	with	the
catalog	declarations	for	any	entities	etc.	that	the	bundle	contains.

For	example,	the		catalog.bom		file	for	Brooklyn's	Webapp	bundle	looks	like	(abbreviated):

brooklyn.catalog:

				version:	...

				items:

				-	id:	org.apache.brooklyn.entity.webapp.nodejs.NodeJsWebAppService

						itemType:	entity

						item:

								type:	org.apache.brooklyn.entity.webapp.nodejs.NodeJsWebAppService

								name:	Node.JS	Application

				...

				-	id:	resilient-bash-web-cluster-template

						itemType:	template

						name:	"Template:	Resilient	Load-Balanced	Bash	Web	Cluster	with	Sensors"

						description:	|

								Sample	YAML	to	provision	a	cluster	of	the	bash/python	web	server	nodes,

								with	sensors	configured,	and	a	load	balancer	pointing	at	them,

								and	resilience	policies	for	node	replacement	and	scaling

						item:

								name:	Resilient	Load-Balanced	Bash	Web	Cluster	(Brooklyn	Example)

In	the	above	YAML	the	first	item	declares	that	the	bundle	provides	an	entity	whose	type	is
	org.apache.brooklyn.entity.webapp.nodejs.NodeJsWebAppService	,	and	whose	name	is	'Node.JS	Application'.	The
second	item	declares	that	the	bundle	provides	a	template	application,	with	id		resilient-bash-web-cluster-template	,
and	includes	a	description	for	what	this	is.

Configuring	the	applications	in	the	Catalog

Brooklyn	Configuration	and	Options

195

https://github.com/apache/brooklyn-server/pull/233

When	running	some	particular	deployment	of	Brooklyn	it	may	not	be	desirable	for	the	sample	applications	to	appear	in
the	catalog	(for	clarity,	"application"	here	in	the	sense	of	an	item	with		itemType:	template).	For	example,	if	you	have
developed	some	bundle	with	your	own	application	and	added	it	to	Karaf	then	you	might	want	only	your	own
application	to	appear	in	the	catalog.

Brooklyn	contains	a	mechanism	to	allow	you	to	configure	what	bundles	will	add	their	applications	to	the	catalog.	The
Karaf	configuration	file		/etc/org.apache.brooklyn.core.catalog.bomscanner.cfg		contains	two	properties,	one
	whitelist		and	the	other		blacklist	,	that	bundles	must	satisfy	for	their	applications	to	be	added	to	the	catalog.	Each
property	value	is	a	comma-separated	list	of	regular	expressions.	The	symbolic	id	of	the	bundle	must	match	one	of	the
regular	expressions	on	the	whitelist,	and	not	match	any	expression	on	the	blacklist,	if	its	applications	are	to	be	added
to	the	bundle.	The	default	values	of	these	properties	are	to	admit	all	bundles,	and	forbid	none.

Caveats
In	the	OSGi	world	specifying	class	names	by	string	in	Brooklyn's	configuration	will	work	only	for	classes	living	in
Brooklyn's	core	modules.	Raise	an	issue	or	ping	us	on	IRC	if	you	find	a	case	where	this	doesn't	work	for	you.	For
custom	SecurityProvider	implementations	refer	to	the	documentation	of	BrooklynLoginModule.

END	Catalog	in	Karaf	comment	-->

Brooklyn	Configuration	and	Options

196

By	default	Brooklyn	persists	its	state	to	storage	so	that	a	server	can	be	restarted	without	loss	or	so	a	high	availability
standby	server	can	take	over.

Brooklyn	can	persist	its	state	to	one	of	two	places:	the	file	system,	or	to	an	object	store	of	your	choice.

Configuration
To	configure	persistence,	edit	the	file		org.apache.brooklyn.osgilauncher.cfg		in	the		etc		directory	of	your	Brooklyn
instance.	The	following	options	are	available:

	persistMode		-	This	is	the	mode	in	which	persistence	is	running,	in	and	is	set	to		AUTO		by	default.	The	possible	values
are:

	AUTO		-	will	rebind	to	any	existing	state,	or	start	up	fresh	if	no	state;
	DISABLED		-	will	not	read	or	persist	any	state;
	REBIND		-	will	rebind	to	the	existing	state,	or	fail	if	no	state	available;
	CLEAN		-	will	start	up	fresh	(removing	any	existing	state)

	persistenceDir		-	This	is	the	directory	to	which	Apache	Brooklyn	reads	and	writes	its	persistence	data.	The	default
location	depends	on	your	installation	method.	Checkout	this	page	for	more	information.

	persistenceLocation		-	This	is	the	location	for	an	object	store	to	read	and	write	persisted	state.

	persistPeriod		-	This	is	an	interval	period	which	can	be	set	to	reduce	the	frequency	with	which	persistence	is	carried
out,	for	example		1s	.

File-based	Persistence
Apache	Brooklyn	starts	with	file-based	persistence	by	default,	saving	data	in	the	persisted	state	folder.	For	the	rest	of
this	document	we	will	refer	to	this	location	as		%persistence-home%	.

If	there	is	already	data	at		%persistence-home%/data	,	then	a	backup	of	the	directory	will	be	made.	This	will	have	a	name
like		%persistence-home%/backups/%date%-%time%-jvyX7Wis-promotion-igFH	.	This	means	backups	of	the	data	directory	will
be	automatically	created	each	time	Brooklyn	is	restarted	(or	if	a	standby	Brooklyn	instances	takes	over	as	master).

The	state	is	written	to	the	given	path.	The	file	structure	under	that	path	is:

	./catalog/	

	./enrichers/	

	./entities/	

	./feeds/	

	./locations/	

	./nodes/	

	./plane/	

	./policies/	

In	each	of	those	directories,	an	XML	file	will	be	created	per	item	-	for	example	a	file	per	entity	in		./entities/	.	This	file
will	capture	all	of	the	state	-	for	example,	an	entity's:	id;	display	name;	type;	config;	attributes;	tags;	relationships	to
locations,	child	entities,	group	membership,	policies	and	enrichers;	and	dynamically	added	effectors	and	sensors.

Object	Store	Persistence

Persistence

197

https://en.wikipedia.org/wiki/Object_storage

Apache	Brooklyn	can	persist	its	state	to	any	Object	Store	API	supported	by	Apache	jclouds	including	S3,	Swift	and
Azure.	This	gives	access	to	any	compatible	Object	Store	product	or	cloud	provider	including	AWS-S3,	SoftLayer,
Rackspace,	HP	and	Microsoft	Azure.	For	a	complete	list	of	supported	providers,	see	jclouds.

To	configure	the	Object	Store,	add	the	credentials	to		brooklyn.cfg		such	as:

brooklyn.location.named.aws-s3-eu-west-1=aws-s3:eu-west-1

brooklyn.location.named.aws-s3-eu-west-1.identity=ABCDEFGHIJKLMNOPQRSTU

brooklyn.location.named.aws-s3-eu-west-1.credential=abcdefghijklmnopqrstuvwxyz1234567890ab/c

or:

brooklyn.location.named.softlayer-swift-ams01=jclouds:openstack-swift:https://ams01.objectstorage.softlayer.net

/auth/v1.0

brooklyn.location.named.softlayer-swift-ams01.identity=ABCDEFGHIJKLM:myname

brooklyn.location.named.softlayer-swift-ams01.credential=abcdefghijklmnopqrstuvwxyz1234567890abcdefghijklmnopqr

stuvwxyz12

brooklyn.location.named.softlayer-swift-ams01.jclouds.keystone.credential-type=tempAuthCredentials

Then	edit	the		persistenceLocation		to	point	at	this	object	store:		softlayer-swift-ams01	.

Rebinding	to	State
When	Brooklyn	starts	up	pointing	at	existing	state,	it	will	recreate	the	entities,	locations	and	policies	based	on	that
persisted	state.

Once	all	have	been	created,	Brooklyn	will	"manage"	the	entities.	This	will	bind	to	the	underlying	entities	under
management	to	update	the	each	entity's	sensors	(e.g.	to	poll	over	HTTP	or	JMX).	This	new	state	will	be	reported	in
the	web-console	and	can	also	trigger	any	registered	policies.

Handling	Rebind	Failures
If	rebind	fails	fail	for	any	reason,	details	of	the	underlying	failures	will	be	reported	in	the		brooklyn.debug.log	.	This	will
include	the	entities,	locations	or	policies	which	caused	an	issue,	and	in	what	way	it	failed.	There	are	several
approaches	to	resolving	problems.

1)	Determine	Underlying	Cause

Go	through	the	log	and	identify	the	likely	areas	in	the	code	from	the	error	message.

2)	Seek	Help

Help	can	be	found	by	contacting	the	Apache	Brooklyn	mailing	list.

3)	Fix-up	the	State

The	state	of	each	entity,	location,	policy	and	enricher	is	persisted	in	XML.	It	is	thus	human	readable	and	editable.

After	first	taking	a	backup	of	the	state,	it	is	possible	to	modify	the	state.	For	example,	an	offending	entity	could	be
removed,	or	references	to	that	entity	removed,	or	its	XML	could	be	fixed	to	remove	the	problem.

4)	Fixing	with	Groovy	Scripts

The	final	(powerful	and	dangerous!)	tool	is	to	execute	Groovy	code	on	the	running	Brooklyn	instance.	If	authorized,
the	REST	api	allows	arbitrary	Groovy	scripts	to	be	passed	in	and	executed.	This	allows	the	state	of	entities	to	be
modified	(and	thus	fixed)	at	runtime.

Persistence

198

https://jclouds.apache.org/
https://aws.amazon.com/s3
http://docs.openstack.org/developer/swift
https://azure.microsoft.com/services/storage/
http://jclouds.apache.org/reference/providers/#blobstore

If	used,	it	is	strongly	recommended	that	Groovy	scripts	are	run	against	a	disconnected	Brooklyn	instance.	After	fixing
the	entities,	locations	and/or	policies,	the	Brooklyn	instance's	new	persisted	state	can	be	copied	and	used	to	fix	the
production	instance.

Writing	Persistable	Code
The	most	common	problem	on	rebind	is	that	custom	entity	code	has	not	been	written	in	a	way	that	can	be	persisted
and/or	rebound.

The	rule	of	thumb	when	implementing	new	entities,	locations,	policies	and	enrichers	is	that	all	state	must	be
persistable.	All	state	must	be	stored	as	config	or	as	attributes,	and	must	be	serializable.	For	making	backwards
compatibility	simpler,	the	persisted	state	should	be	clean.

Below	are	tips	and	best	practices	for	when	implementing	an	entity	in	Java	(or	any	other	JVM	language).

How	to	store	entity	state:

Config	keys	and	values	are	persisted.
Store	an	entity's	runtime	state	as	attributes.
Don't	store	state	in	arbitrary	fields	-	the	field	will	not	be	persisted	(this	is	a	design	decision,	because	Brooklyn
cannot	intercept	the	field	being	written	to,	so	cannot	know	when	to	persist).
Don't	just	modify	the	retrieved	attribute	value	(e.g.		getAttribute(MY_LIST).add("a")		is	bad).	The	value	may	not	be
persisted	unless	setAttribute()	is	called.
For	special	cases,	it	is	possible	to	call		entity.requestPerist()		which	will	trigger	asynchronous	persistence	of	the
entity.
Overriding	(and	customizing)	of		getRebindSupport()		is	discouraged	-	this	will	change	in	a	future	version.

How	to	store	policy/enricher/location	state:

Store	values	as	config	keys	where	applicable.
Unfortunately	these	(currently)	do	not	have	attributes.	Normally	the	state	of	a	policy	or	enricher	is	transient	-	on
rebind	it	starts	afresh,	for	example	with	monitoring	the	performance	or	health	metrics	rather	than	relying	on	the
persisted	values.
For	special	cases,	you	can	annotate	a	field	with		@SetFromFlag		for	it	be	persisted.	When	you	call
	requestPersist()		then	values	of	these	fields	will	be	scheduled	to	be	persisted.	Warning:	the		@SetFromFlag	
functionality	may	change	in	future	versions.

Persistable	state:

Ensure	values	can	be	serialized.	This	(currently)	uses	xstream,	which	means	it	does	not	need	to	implement
	Serializable	.
Always	use	static	(or	top-level)	classes.	Otherwise	it	will	try	to	also	persist	the	outer	instance!
Any	reference	to	an	entity	or	location	will	be	automatically	swapped	out	for	marker,	and	re-injected	with	the	new
entity/location	instance	on	rebind.	The	same	applies	for	policies,	enrichers,	feeds,	catalog	items	and
	ManagementContext	.

Behaviour	on	rebind:

By	extending		SoftwareProcess	,	entities	get	a	lot	of	the	rebind	logic	for	free.	For	example,	the	default		rebind()	
method	will	call		connectSensors()	.	See		SoftwareProcess		Lifecycle	for	more	details.
If	necessary,	implement	rebind.	The		entity.rebind()		is	called	automatically	by	the	Brooklyn	framework	on
rebind,	after	configuring	the	entity's	config/attributes	but	before	the	entity	is	managed.	Note	that		init()		will	not
be	called	on	rebind.
Feeds	will	be	persisted	if	and	only	if		entity.addFeed(...)		was	called.	Otherwise	the	feed	needs	to	be	re-
registered	on	rebind.	Warning:	this	behaviour	may	change	in	future	version.

Persistence

199

All	functions/predicates	used	with	persisted	feeds	must	themselves	be	persistable	-	use	of	anonymous	inner
classes	is	strongly	discouraged.
Subscriptions	(e.g.	from	calls	to		subscribe(...)		for	sensor	events)	are	not	persisted.	They	must	be	re-registered
on	rebind.	Warning:	this	behaviour	may	change	in	future	version.

Below	are	tips	to	make	backwards-compatibility	easier	for	persisted	state:

Never	use	anonymous	inner	classes	-	even	in	static	contexts.	The	auto-generated	class	names	are	brittle,	making
backwards	compatibility	harder.
Always	use	sensible	field	names	(and	use		transient		whenever	you	don't	want	it	persisted).	The	field	names	are
part	of	the	persisted	state.
Consider	using	Value	Objects	for	persisted	values.	This	can	give	clearer	separation	of	responsibilities	in	your
code,	and	clearer	control	of	what	fields	are	being	persisted.
Consider	writing	transformers	to	handle	backwards-incompatible	code	changes.	Brooklyn	supports	applying
transformations	to	the	persisted	state,	which	can	be	done	as	part	of	an	upgrade	process.

Persisted	State	Backup
File	system	backup

When	using	the	file	system	it	is	important	to	ensure	it	is	backed	up	regularly.

One	could	use		rsync		to	regularly	backup	the	contents	to	another	server.

It	is	also	recommended	to	periodically	create	a	complete	archive	of	the	state.	A	simple	mechanism	is	to	run	a	CRON
job	periodically	(e.g.	every	30	minutes)	that	creates	an	archive	of	the	persistence	directory,	and	uploads	that	to	a
backup	facility	(e.g.	to	S3).

Optionally,	to	avoid	excessive	load	on	the	Brooklyn	server,	the	archive-generation	could	be	done	on	another	"data"
server.	This	could	get	a	copy	of	the	data	via	an		rsync		job.

An	example	script	to	be	invoked	by	CRON	is	shown	below:

DATE=`date	"+%Y%m%d.%H%M.%S"`

BACKUP_FILENAME=/path/to/archives/back-${DATE}.tar.gz

DATA_DIR=/path/to/base/dir/data

tar	--exclude	'*/backups/*'	-czvf	$BACKUP_FILENAME	$DATA_DIR

#	For	s3cmd	installation	see	http://s3tools.org/repositories

s3cmd	put	$BACKUP_FILENAME	s3://mybackupbucket

rm	$BACKUP_FILENAME

Object	store	backup

Object	Stores	will	normally	handle	replication.	However,	many	such	object	stores	do	not	handle	versioning	(i.e.	to
allow	access	to	an	old	version,	if	an	object	has	been	incorrectly	changed	or	deleted).

The	state	can	be	downloaded	periodically	from	the	object	store,	archived	and	backed	up.

An	example	script	to	be	invoked	by	CRON	is	shown	below:

DATE=`date	"+%Y%m%d.%H%M.%S"`

BACKUP_FILENAME=/path/to/archives/back-${DATE}.tar.gz

TEMP_DATA_DIR=/path/to/tempdir

brooklyn	copy-state	\

								--persistenceLocation	named:my-persistence-location	\

Persistence

200

								--persistenceDir	/path/to/bucket	\

								--destinationDir	$TEMP_DATA_DIR

tar	--exclude	'*/backups/*'	-czvf	$BACKUP_FILENAME	$TEMP_DATA_DIR

#	For	s3cmd	installation	see	http://s3tools.org/repositories

s3cmd	put	$BACKUP_FILENAME	s3://mybackupbucket

rm	$BACKUP_FILENAME

rm	-r	$TEMP_DATA_DIR

Persistence

201

Brooklyn	will	automatically	run	in	HA	mode	if	multiple	Brooklyn	instances	are	started	pointing	at	the	same	persistence
store.	One	Brooklyn	node	(e.g.	the	first	one	started)	is	elected	as	HA	master:	all	write	operations	against	Brooklyn
entities,	such	as	creating	an	application	or	invoking	an	effector,	should	be	directed	to	the	master.

Once	one	node	is	running	as		MASTER	,	other	nodes	start	in	either		STANDBY		or		HOT_STANDBY		mode:

In		STANDBY		mode,	a	Brooklyn	instance	will	monitor	the	master	and	will	be	a	candidate	to	become		MASTER		should
the	master	fail.	Standby	nodes	do	not	attempt	to	rebind	until	they	are	elected	master,	so	the	state	of	existing
entities	is	not	available	at	the	standby	node.	However	a	standby	server	consumes	very	little	resource	until	it	is
promoted.

In		HOT_STANDBY		mode,	a	Brooklyn	instance	will	read	and	make	available	the	live	state	of	entities.	Thus	a	hot-
standby	node	is	available	as	a	read-only	copy.	As	with	the	standby	node,	if	a	hot-standby	node	detects	that	the
master	fails,	it	will	be	a	candidate	for	promotion	to	master.

In		HOT_BACKUP		mode,	a	Brooklyn	instance	will	read	and	make	available	the	live	state	of	entities,	as	a	read-only
copy.	However	this	node	is	not	able	to	become	master,	so	it	can	safely	be	used	to	test	compatibility	across
different	versions.

To	explicitly	specify	what	HA	mode	a	node	should	be	in,	the	following	options	are	available	for	the	config	option
	highAvailabilityMode		in		org.apache.brooklyn.osgilauncher.cfg	:

	DISABLED	:	management	node	works	in	isolation;	it	will	not	cooperate	with	any	other	standby/master	nodes	in
management	plane
	AUTO	:	will	look	for	other	management	nodes,	and	will	allocate	itself	as	standby	or	master	based	on	other	nodes'
states
	MASTER	:	will	startup	as	master;	if	there	is	already	a	master	then	fails	immediately
	STANDBY	:	will	start	up	as	lukewarm	standby;	if	there	is	not	already	a	master	then	fails	immediately
	HOT_STANDBY	:	will	start	up	as	hot	standby;	if	there	is	not	already	a	master	then	fails	immediately
	HOT_BACKUP	:	will	start	up	as	hot	backup;	this	can	be	done	even	if	there	is	not	already	a	master;	this	node	will	not
be	a	master

The	REST	API	offers	live	detection	and	control	of	the	HA	mode,	including	setting	priority	to	control	which	nodes	will	be
promoted	on	master	failure:

	/server/ha/state	:	Returns	the	HA	state	of	a	management	node	(GET),	or	changes	the	state	(POST)
	/server/ha/states	:	Returns	the	HA	states	and	detail	for	all	nodes	in	a	management	plane
	/server/ha/priority	:	Returns	the	HA	node	priority	for	MASTER	failover	(GET),	or	sets	that	priority	(POST)

Note	that	when	POSTing	to	a	non-master	server	it	is	necessary	to	pass	a		Brooklyn-Allow-Non-Master-Access:	true	
header.	For	example,	the	following	cURL	command	could	be	used	to	change	the	state	of	a		STANDBY		node	on
	localhost:8082		to		HOT_STANDBY	:

curl	-v	-X	POST	-d	mode=HOT_STANDBY	-H	"Brooklyn-Allow-Non-Master-Access:	true"	http://localhost:8082/v1/server

/ha/state

High	Availability

202

This	supplements	the	High	Availability	documentation	and	provides	an	example	of	how	to	configure	a	pair	of	Apache
Brooklyn	servers	to	run	in	master-standby	mode	with	a	shared	NFS	datastore

Prerequisites

Two	VMs	(or	physical	machines)	have	been	provisioned
NFS	or	another	suitable	file	system	has	been	configured	and	is	available	to	both	VMs*
An	NFS	folder	has	been	mounted	on	both	VMs	at		/mnt/brooklyn-persistence		and	both	machines	can	write	to	the
folder

*	Brooklyn	can	be	configured	to	use	either	an	object	store	such	as	S3,	or	a	shared	NFS	mount.	The	recommended
option	is	to	use	an	object	store	as	described	in	the	Object	Store	Persistence	documentation.	For	simplicity,	a	shared
NFS	folder	is	assumed	in	this	example

Launching

To	start,	download	and	install	the	latest	Apache	Brooklyn	release	on	both	VMs	following	the	instructions	in	Running
Apache	Brooklyn

On	the	first	VM,	which	will	be	the	master	node,	set	the	following	configuration	options	in
	org.apache.brooklyn.osgilauncher.cfg	:

highAvailabilityMode:	MASTER
persistMode:	AUTO
persistenceDir:	/mnt/brooklyn-persistence

Then	launch	Brooklyn	with:

$	bin/start

If	you	are	using	RPMs/deb	to	install,	please	see	the	Running	Apache	Brooklyn	documentation	for	the	appropriate
launch	commands

Once	Brooklyn	has	launched,	on	the	second	VM,	set	the	following	configuration	options	in
	org.apache.brooklyn.osgilauncher.cfg	:

highAvailabilityMode:	AUTO
persistMode:	AUTO
persistenceDir:	/mnt/brooklyn-persistence

Then	launch	the	standby	Brooklyn	with:

$	bin/start

Failover

When	running	as	a	HA	standby	node,	each	standby	Brooklyn	server	(in	this	case	there	is	only	one	standby)	will	check
the	shared	persisted	state	every	one	second	to	determine	the	state	of	the	HA	master.	If	no	heartbeat	has	been
recorded	for	30	seconds,	then	an	election	will	be	performed	and	one	of	the	standby	nodes	will	be	promoted	to	master.
At	this	point	all	requests	should	be	directed	to	the	new	master	node.	If	the	master	is	terminated	gracefully,	the
secondary	will	be	immediately	promoted	to	mater.	Otherwise,	the	secondary	will	be	promoted	after	heartbeats	are
missed	for	a	given	length	of	time.	This	defaults	to	30	seconds,	and	is	configured	in		brooklyn.cfg		using
	brooklyn.ha.heartbeatTimeout	

Configuring	HA	-	an	example

203

In	the	event	that	tasks	-	such	as	the	provisioning	of	a	new	entity	-	are	running	when	a	failover	occurs,	the	new	master
will	display	the	current	state	of	the	entity,	but	will	not	resume	its	provisioning	or	re-run	any	partially	completed	tasks.	In
this	case	it	may	be	necessary	to	remove	the	entity	and	reprovision	it.	In	the	case	of	a	failover	whilst	executing	a	task
called	by	an	effector,	it	may	be	possible	to	simple	call	the	effector	again

Client	Configuration

It	is	the	responsibility	of	the	client	to	connect	to	the	master	Brooklyn	server.	This	can	be	accomplished	in	a	variety	of
ways:

Reverse	Proxy

To	allow	the	client	application	to	automatically	fail	over	in	the	event	of	a	master	server	becoming	unavailable,	or
the	promotion	of	a	new	master,	a	reverse	proxy	can	be	configured	to	route	traffic	depending	on	the	response
returned	by		https://<ip-address>:8443/v1/server/ha/state		(see	above).	If	a	server	returns		"MASTER"	,	then	traffic
should	be	routed	to	that	server,	otherwise	it	should	not	be.	The	client	software	should	be	configured	to	connect	to
the	reverse	proxy	server	and	no	action	is	required	by	the	client	in	the	event	of	a	failover.	It	can	take	up	to	30
seconds	for	the	standby	to	be	promoted,	so	the	reverse	proxy	should	retry	for	at	least	this	period,	or	the	failover
time	should	be	reconfigured	to	be	shorter

Re-allocating	an	Elastic	IP	on	Failover

If	the	cloud	provider	you	are	using	supports	Elastic	or	Floating	IPs,	then	the	IP	address	should	be	allocated	to	the
HA	master,	and	the	client	application	configured	to	connect	to	the	floating	IP	address.	In	the	event	of	a	failure	of
the	master	node,	the	standby	node	will	automatically	be	promoted	to	master,	and	the	floating	IP	will	need	to	be
manually	re-allocated	to	the	new	master	node.	No	action	is	required	by	the	client	in	the	event	of	a	failover.	It	is
possible	to	automate	the	re-allocation	of	the	floating	IP	if	the	Brooklyn	servers	are	deployed	and	managed	by
Brooklyn	using	the	entity		org.apache.brooklyn.entity.brooklynnode.BrooklynCluster	

Client-based	failover

In	this	scenario,	the	responsibilty	for	determining	the	Brooklyn	master	server	falls	on	the	client	application.	When
configuring	the	client	application,	a	list	of	all	servers	in	the	cluster	is	passed	in	at	application	startup.	On	first
connection,	the	client	application	connects	to	any	of	the	members	of	the	cluster	to	retrieve	the	HA	states	(see
above).	The	JSON	object	returned	is	used	to	determine	the	addresses	of	all	members	of	the	cluster,	and	also	to
determine	which	node	is	the	HA	master

In	the	event	of	a	failure	of	the	master	node,	the	client	application	should	then	retrieve	the	HA	states	of	the	cluster
from	any	of	the	other	cluster	members.	This	is	the	same	process	as	when	the	application	first	connects	to	the
cluster.	The	client	should	refresh	its	list	of	cluster	memebers	and	determine	which	node	is	the	HA	master

It	is	also	recommended	that	the	client	application	periodically	checks	the	status	of	the	cluster	and	updates	its	list
of	addresses.	This	will	ensure	that	failover	is	still	possible	if	the	standby	server(s)	has	been	replaced.	It	also
allows	additional	standby	servers	to	be	added	at	any	time

Testing

You	can	confirm	that	Brooklyn	is	running	in	high	availibility	mode	on	the	master	by	logging	into	the	web	console	at
	https://<ip-address>:8443	.	Similarly	you	can	log	into	the	web	console	on	the	standby	VM	where	you	will	see	a
warning	that	the	server	is	not	the	high	availability	master.

Configuring	HA	-	an	example

204

To	test	a	failover,	you	can	simply	terminate	the	process	on	the	first	VM	and	log	into	the	web	console	on	the	second
VM.	Upon	launch,	Brooklyn	will	output	its	PID	to	the	file		pid.txt	;	you	can	force	an	immediate	(non-graceful)
termination	of	the	process	by	running	the	following	command	from	the	same	directory	from	which	you	launched
Brooklyn:

$	kill	-9	$(cat	pid.txt)

It	is	also	possiblity	to	check	the	high	availability	state	of	a	running	Brooklyn	server	using	the	following	curl	command:

$	curl	-k	-u	myusername:mypassword	https://<ip-address>:8443/v1/server/ha/state

This	will	return	one	of	the	following	states:

"INITIALIZING"

"STANDBY"

"HOT_STANDBY"

"HOT_BACKUP"

"MASTER"

"FAILED"

"TERMINATED"

Note:	The	quotation	characters	will	be	included	in	the	reply

To	obtain	information	about	all	of	the	nodes	in	the	cluster,	run	the	following	command	against	any	of	the	nodes	in	the
cluster:

$	curl	-k	-u	myusername:mypassword	https://<ip-address>:8443/v1/server/ha/states

This	will	return	a	JSON	document	describing	the	Brooklyn	nodes	in	the	cluster.	An	example	of	two	HA	Brooklyn	nodes
is	as	follows	(whitespace	formatting	has	been	added	for	clarity):

{

		ownId:	"XkJeXUXE",

		masterId:	"yAVz0fzo",

		nodes:	{

				yAVz0fzo:	{

						nodeId:	"yAVz0fzo",

						nodeUri:	"https://<server1-ip-address>:8443/",

						status:	"MASTER",

						localTimestamp:	1466414301065,

						remoteTimestamp:	1466414301000

				},

				XkJeXUXE:	{

						nodeId:	"XkJeXUXE",

						nodeUri:	"https://<server2-ip-address>:8443/",

						status:	"STANDBY",

						localTimestamp:	1466414301066,

						remoteTimestamp:	1466414301000

				}

		},

		links:	{	}

}

The	examples	above	show	how	to	use		curl		to	manually	check	the	status	of	Brooklyn	via	its	REST	API.	The	same
REST	API	calls	can	also	be	used	by	automated	third	party	monitoring	tools	such	as	Nagios

Configuring	HA	-	an	example

205

Configuring	HA	-	an	example

206

Brooklyn	uses	the	SLF4J	logging	facade,	which	allows	use	of	many	popular	frameworks	including		logback	,
	java.util.logging		and		log4j	.

The	convention	for	log	levels	is	as	follows:

	ERROR		and	above:	exceptional	situations	which	indicate	that	something	has	unexpectedly	failed	or	some	other
problem	has	occured	which	the	user	is	expected	to	attend	to
	WARN	:	exceptional	situations	which	the	user	may	which	to	know	about	but	which	do	not	necessarily	indicate
failure	or	require	a	response
	INFO	:	a	synopsis	of	activity,	but	which	should	not	generate	large	volumes	of	events	nor	overwhelm	a	human
observer
	DEBUG		and	lower:	detail	of	activity	which	is	not	normally	of	interest,	but	which	might	merit	closer	inspection	under
certain	circumstances.

Loggers	follow	the		package.ClassName		naming	standard.

Using	Logback	through	OSGi	Pax	Logging
In	the	OSGi	based	Apache	Brooklyn	logging	is	configured	from	ops4j	pax	logging.

See:	Logging	-	OSGi	based	Apache	Brooklyn	
https://ops4j1.jira.com/wiki/display/paxlogging/Configuration

Standard	Configuration
A		logback.xml		file	is	included	in	the		conf/		directly	of	the	Brooklyn	distro;	this	is	read	by		brooklyn		at	launch	time.
Changes	to	the	logging	configuration,	such	as	new	appenders	or	different	log	levels,	can	be	made	directly	in	this	file
or	in	a	new	file	included	from	this.

Advanced	Configuration
The	default		logback.xml		file	references	a	collection	of	other	log	configuration	files	included	in	the	Brooklyn	jars.	It	is
necessary	to	understand	the	source	structure	in	the	logback-includes	project.

For	example,	to	change	the	debug	log	inclusions,	create	a	folder		brooklyn		under		conf		and	create	a	file		logback-
debug.xml		based	on	the	brooklyn/logback-debug.xml	from	that	project.

Log	File	Backup
This	sub-section	is	a	work	in	progress;	feedback	from	the	community	is	extremely	welcome.

The	default	rolling	log	files	can	be	backed	up	periodically,	e.g.	using	a	CRON	job.

Note	however	that	the	rolling	log	file	naming	scheme	will	rename	the	historic	zipped	log	files	such	that
	brooklyn.debug-1.log.zip		is	the	most	recent	zipped	log	file.	When	the	current		brooklyn.debug.log		is	to	be	zipped,
the	previous	zip	file	will	be	renamed		brooklyn.debug-2.log.zip	.	This	renaming	of	files	can	make	RSYNC	or	backups
tricky.

An	option	is	to	covert/move	the	file	to	a	name	that	includes	the	last-modified	timestamp.	For	example	(on	mac):

LOG_FILE=brooklyn.debug-1.log.zip

TIMESTAMP=`stat	-f	'%Um'	$LOG_FILE`

mv	$LOG_FILE	/path/to/archive/brooklyn.debug-$TIMESTAMP.log.zip

Logging

207

https://ops4j1.jira.com/wiki/display/paxlogging/Configuration

Logging	aggregators
Integration	with	systems	like	Logstash	and	Splunk	is	possible	using	standard	logback	configuration.	Logback	can	be
configured	to	write	to	the	syslog,	which	can	then	feed	its	logs	to	Logstash.

For	More	Information
The	following	resources	may	be	useful	when	configuring	logging:

The	logback-includes	project
Brooklyn	Developer	Guide	logging	tips
The	Logback	Project	home	page

Logging

208

http://logback.qos.ch/manual/appenders.html#SyslogAppender
http://www.logstash.net/docs/1.4.2/inputs/syslog
http://logback.qos.ch/

Sometimes	it	is	useful	that	configuration	in	a	blueprint,	or	in	Brooklyn	itself,	is	not	given	explicitly,	but	is	instead
replaced	with	a	reference	to	some	other	storage	system.	For	example,	it	is	undesirable	for	a	blueprint	to	contain	a
plain-text	password	for	a	production	system,	especially	if	(as	we	often	recommend)	the	blueprints	are	kept	in	the
developer's	source	code	control	system.

To	handle	this	problem,	Apache	Brooklyn	supports	externalized	configuration.	This	allows	a	blueprint	to	refer	to	a
piece	of	information	that	is	stored	elsewhere.		brooklyn.cfg		defines	the	external	suppliers	of	configuration
information.	At	runtime,	when	Brooklyn	finds	a	reference	to	externalized	configuration	in	a	blueprint,	it	consults
	brooklyn.cfg		for	information	about	the	supplier,	and	then	requests	that	the	supplier	return	the	information	required	by
the	blueprint.

Take,	as	a	simple	example,	a	web	app	which	connects	to	a	database.	In	development,	the	developer	is	running	a
local	instance	of	PostgreSQL	with	a	simple	username	and	password.	But	in	production,	an	enterprise-grade	cluster	of
PostgreSQL	is	used,	and	a	dedicated	service	is	used	to	provide	passwords.	The	same	blueprint	can	be	used	to
service	both	groups	of	users,	with		brooklyn.cfg		changing	the	behaviour	depending	on	the	deployment	environment.

Here	is	the	blueprint:

name:	MyApplication

services:

-	type:	brooklyn.entity.webapp.jboss.JBoss7Server

		name:	AppServer	HelloWorld

		brooklyn.config:

				wars.root:	http://search.maven.org/remotecontent?filepath=org/apache/brooklyn/example/brooklyn-example-hell

o-world-sql-webapp/0.8.0-incubating/brooklyn-example-hello-world-sql-webapp-0.8.0-incubating.war

				http.port:	8080+

				java.sysprops:

						brooklyn.example.db.url:	

								$brooklyn:formatString:

										-	jdbc:postgresql://%s/myappdb?user=%s\\&password=%s

										-	$brooklyn:external("servers",	"postgresql")

										-	$brooklyn:external("credentials",	"postgresql-user")

										-	$brooklyn:external("credentials",	"postgresql-password")

You	can	see	that	when	we	are	building	up	the	JDBC	URL,	we	are	using	the		external		function.	This	takes	two
parameters:	the	first	is	the	name	of	the	configuration	supplier,	the	second	is	the	name	of	a	key	that	is	stored	by	the
configuration	supplier.	In	this	case	we	are	using	two	different	suppliers:		servers		to	store	the	location	of	the	server,
and		credentials		which	is	a	security-optimized	supplier	of	secrets.

Developers	would	add	lines	like	this	to	the		brooklyn.cfg		file	on	their	workstation:

brooklyn.external.servers=org.apache.brooklyn.core.config.external.InPlaceExternalConfigSupplier

brooklyn.external.servers.postgresql=127.0.0.1

brooklyn.external.credentials=org.apache.brooklyn.core.config.external.InPlaceExternalConfigSupplier

brooklyn.external.credentials.postgresql-user=admin

brooklyn.external.credentials.postgresql-password=admin

In	this	case,	all	of	the	required	information	is	included	in-line	in	the	local		brooklyn.cfg	.

Whereas	in	production,		brooklyn.cfg		might	look	like	this:

brooklyn.external.servers=org.apache.brooklyn.core.config.external.PropertiesFileExternalConfigSupplier

brooklyn.external.servers.propertiesUrl=https://ops.example.com/servers.properties

brooklyn.external.credentials=org.apache.brooklyn.core.config.external.vault.VaultAppIdExternalConfigSupplier

brooklyn.external.credentials.endpoint=https://vault.example.com

brooklyn.external.credentials.path=secret/enterprise-postgres

brooklyn.external.credentials.appId=MyApp

Externalized	Configuration

209

In	this	case,	the	list	of	servers	is	stored	in	a	properties	file	located	on	an	Operations	Department	web	server,	and	the
credentials	are	stored	in	an	instance	of	Vault.	More	information	on	these	providers	is	below.

For	demo	purposes,	there	is	a	pre-defined	external	provider	called		brooklyn-demo-sample		which	defines		hidden-
brooklyn-password		as		br00k11n	.	This	is	used	in	some	of	the	sample	blueprints,	referencing
	$brooklyn:external("brooklyn-demo-sample",	"hidden-brooklyn-password")	.	The	value	used	here	can	be	overridden
with	the	following	in	your		brooklyn.cfg	:

brooklyn.external.brooklyn-demo-sample=org.apache.brooklyn.core.config.external.InPlaceExternalConfigSupplier

brooklyn.external.brooklyn-demo-sample.hidden-brooklyn-password=new_password

Defining	Suppliers
External	configuration	suppliers	are	defined	in		brooklyn.cfg	.	The	minimal	definition	is	of	the	form:

brooklyn.external.supplierName	=	className

This	defines	a	supplier	named	supplierName.	Brooklyn	will	attempt	to	instantiate	className;	it	is	this	class	which	will
provide	the	behaviour	of	how	to	retrieve	data	from	the	supplier.	Brooklyn	includes	a	number	of	supplier
implementations;	see	below	for	more	details.

Suppliers	may	require	additional	configuration	options.	These	are	given	as	additional	properties	in		brooklyn.cfg	:

brooklyn.external.supplierName	=	className

brooklyn.external.supplierName.firstConfig	=	value

brooklyn.external.supplierName.secondConfig	=	value

Referring	to	External	Configuration	in	Blueprints
Externalized	configuration	adds	a	new	function	to	the	Brooklyn	blueprint	language	DSL,		$brooklyn:external	.	This
function	takes	two	parameters:

1.	 supplier
2.	 key

When	resolving	the	external	reference,	Brooklyn	will	first	identify	the	supplier	of	the	information,	then	it	will	give	the
supplier	the	key.	The	returned	value	will	be	substituted	into	the	blueprint.

You	can	use		$brooklyn:external		directly:

name:	MyApplication

brooklyn.config:

		example:	$brooklyn:external("supplier",	"key")

or	embed	the		external		function	inside	another		$brooklyn		DSL	function,	such	as		$brooklyn:formatString	:

name:	MyApplication

brooklyn.config:

		example:	$brooklyn:formatString("%s",	external("supplier",	"key"))

Referring	to	External	Configuration	in	brooklyn.cfg
The	same	blueprint	language	DSL	can	be	used	from		brooklyn.cfg	.	For	example:

Externalized	Configuration

210

https://www.vaultproject.io/

brooklyn.location.jclouds.aws-ec2.identity=$brooklyn:external("mysupplier",	"aws-identity")

brooklyn.location.jclouds.aws-ec2.credential=$brooklyn:external("mysupplier",	"aws-credential")

Referring	to	External	Configuration	in	Catalog	Items
The	same	blueprint	language	DSL	can	be	used	within	YAML	catalog	items.	For	example:

brooklyn.catalog:

		id:	com.example.myblueprint

		version:	"1.2.3"

		itemType:	entity

		brooklyn.libraries:

		-	>

				$brooklyn:formatString("https://%s:%s@repo.example.com/libs/myblueprint-1.2.3.jar",	

				external("mysupplier",	"username"),	external("mysupplier",	"password"))

		item:

				type:	com.example.MyBlueprint

Note	the		>		in	the	example	above	is	used	to	split	across	multiple	lines.

Suppliers	available	with	Brooklyn
Brooklyn	ships	with	a	number	of	external	configuration	suppliers	ready	to	use.

In-place

InPlaceExternalConfigSupplier	embeds	the	configuration	keys	and	values	as	properties	inside		brooklyn.cfg	.	For
example:

brooklyn.external.servers=org.apache.brooklyn.core.config.external.InPlaceExternalConfigSupplier

brooklyn.external.servers.postgresql=127.0.0.1

Then,	a	blueprint	which	referred	to		$brooklyn:external("servers",	"postgresql")		would	receive	the	value		127.0.0.1	.

Properties	file

PropertiesFileExternalConfigSupplier	loads	a	properties	file	from	a	URL,	and	uses	the	keys	and	values	in	this	file	to
respond	to	configuration	lookups.

Given	this	configuration:

brooklyn.external.servers=org.apache.brooklyn.core.config.external.PropertiesFileExternalConfigSupplier

brooklyn.external.servers.propertiesUrl=https://ops.example.com/servers.properties

This	would	cause	the	supplier	to	download	the	given	URL.	Assuming	that	the	file	contained	this	entry:

postgresql=127.0.0.1

Then,	a	blueprint	which	referred	to		$brooklyn:external("servers",	"postgresql")		would	receive	the	value		127.0.0.1	.

Vault

Externalized	Configuration

211

Vault	is	a	server-based	tool	for	managing	secrets.	Brooklyn	provides	suppliers	that	are	able	to	query	the	Vault	REST
API	for	configuration	values.	The	different	suppliers	implement	alternative	authentication	options	that	Vault	provides.

For	all	of	the	authentication	methods,	you	must	always	set	these	properties	in		brooklyn.cfg	:

brooklyn.external.supplierName.endpoint=<Vault	HTTP/HTTPs	endpoint>

brooklyn.external.supplierName.path=<path	to	a	Vault	object>

For	example,	if	the	path	is	set	to		secret/brooklyn	,	then	attempting	to	retrieve	the	key		foo		would	cause	Brooklyn	to
retrieve	the	value	of	the		foo		key	on	the		secret/brooklyn		object.	This	value	can	be	set	using	the	Vault	CLI	like	this:

vault	write	secret/brooklyn	foo=bar

Authentication	by	username	and	password

The		userpass		plugin	for	Vault	allows	authentication	with	username	and	password.

brooklyn.external.supplierName=org.apache.brooklyn.core.config.external.vault.VaultUserPassExternalConfigSuppli

er

brooklyn.external.supplierName.username=fred

brooklyn.external.supplierName.password=s3kr1t

Authentication	using	App	ID

The		app_id		plugin	for	Vault	allows	you	to	specify	an	"app	ID",	and	then	designate	particular	"user	IDs"	to	be	part	of
the	app.	Typically	the	app	ID	would	be	known	and	shared,	but	user	ID	would	be	autogenerated	on	the	client	in	some
way.	Brooklyn	implements	this	by	determining	the	MAC	address	of	the	server	running	Brooklyn	(expressed	as	12
lower	case	hexadecimal	digits	without	separators)	and	passing	this	as	the	user	ID.

brooklyn.external.supplierName=org.apache.brooklyn.core.config.external.vault.VaultAppIdExternalConfigSupplier

brooklyn.external.supplierName.appId=MyApp

If	you	do	not	wish	to	use	the	MAC	address	as	the	user	ID,	you	can	override	it	with	your	own	choice	of	user	ID:

brooklyn.external.supplierName.userId=server3.cluster2.europe

Authentication	by	fixed	token

If	you	have	a	fixed	token	string,	then	you	can	use	the	VaultTokenExternalConfigSupplier	class	and	provide	the	token
in		brooklyn.cfg	:

brooklyn.external.supplierName=org.apache.brooklyn.core.config.external.vault.VaultTokenExternalConfigSupplier

brooklyn.external.supplierName.token=1091fc84-70c1-b266-b99f-781684dd0d2b

This	supplier	is	suitable	for	"smoke	testing"	the	Vault	supplier	using	the	Initial	Root	Token	or	similar.	However	it	is	not
suitable	for	production	use	as	it	is	inherently	insecure	-	should	the	token	be	compromised,	an	attacker	could	have
complete	access	to	your	Vault,	and	the	cleanup	operation	would	be	difficult.	Instead	you	should	use	one	of	the	other
suppliers.

Writing	Custom	External	Configuration	Suppliers

Externalized	Configuration

212

https://www.vaultproject.io

Supplier	implementations	must	conform	to	the	brooklyn.config.external.ExternalConfigSupplier	interface,	which	is	very
simple:

String	getName();

String	get(String	key);

Classes	implementing	this	interface	can	be	placed	in	the		lib/dropins		folder	of	Brooklyn,	and	then	the	supplier
defined	in		brooklyn.cfg		as	normal.

Externalized	Configuration

213

Server	Specification
The	size	of	server	required	by	Brooklyn	depends	on	the	amount	of	activity.	This	includes:

the	number	of	entities/VMs	being	managed
the	number	of	VMs	being	deployed	concurrently
the	amount	of	management	and	monitoring	required	per	entity

For	dev/test	or	when	there	are	only	a	handful	of	VMs	being	managed,	a	small	VM	is	sufficient.	For	example,	an	AWS
m3.medium	with	one	vCPU,	3.75GiB	RAM	and	4GB	disk.

For	larger	production	uses,	a	more	appropriate	machine	spec	would	be	two	or	more	cores,	at	least	8GB	RAM	and
100GB	disk.	The	disk	is	just	for	logs,	a	small	amount	of	persisted	state,	and	any	binaries	for	custom
blueprints/integrations.

Disk	Space

There	are	three	main	consumers	of	disk	space:

Static	files:	these	are	the	Apache	Brooklyn	distribution	with	its	own	dependencies,	OSGi	bundles	for	custom
blueprints	and	integrations	installed	to	the		deploy/		directory,	plus		data/		directory	which	is	generated	on	first
launch.	Note	that	Brooklyn	requires	that	Java	is	installed	which	you	may	have	to	consider	when	calculating	disk
space	requirements.
Persisted	state:	when	using	Persistence	--	which	is	a	prerequisite	for	High	Availability	--	Brooklyn	will	save	data
to	a	store	location.	Items	in	the	persisted	state	include	metadata	about	the	Brooklyn	servers,	catalog	items,	and
metadata	about	all	running	applications	and	entities.
Log	files:	Brooklyn	writes	info	and	debug	log	files.	By	default,	these	are	written	to	the	local	filesystem.	This	can
be	reconfigured	to	set	the	destination	and	to	increase	or	decrease	the	detail	in	the	logs.	See	the	Logging	section
for	more	details.

The	Apache	Brooklyn	distribution	itself,	when	unpacked,	consumes	approximately	75MB	of	disk	space.	This	includes
everything	needed	to	run	Brooklyn	except	for	a	Java	VM.	The	space	consumed	by	additional	binaries	for	custom
blueprints	and	integrations	is	application-specific.

Persisted	state,	excluding	catalog	data,	is	relatively	small,	starting	at	approximately	300KB	for	a	clean,	idle	Brooklyn
server.	Deploying	blueprints	will	add	to	this	-	how	much	depends	exactly	on	the	entities	involved	and	is	therefore
application	specific,	but	as	a	guideline,	a	3-node	Riak	cluster	adds	approximately	500KB	to	the	persistence	store.

Log	data	can	be	a	large	consumer	of	disk	space.	By	default	Brooklyn	generates	two	logfiles,	one	which	logs	notable
information	only,	and	another	which	logs	at	a	debug	level.	Each	logfile	rotates	when	it	hits	a	size	of	100MB;	a
maximum	of	10	log	files	are	retained	for	each	type.	The	two	logging	streams	combined,	therefore,	can	consume	up	to
2GB	of	disk	space.

In	the	default	configuration	of	Brooklyn's		.tar.gz		and		.zip		distributions,	logs	are	saved	to	the	Brooklyn	installation
directory.	You	will	most	likely	want	to	reconfigure	Brooklyn's	logging	to	save	logs	to	a	location	elsewhere.	In	the		.rpm	
and		.deb		packaging,	logging	files	will	be	located	under		/var/log	.	You	can	further	reconfiguring	the	logging	detail
level	and	log	rotation	according	to	your	organisation's	policy.

OS	Requirements
Brooklyn	is	tested	against	CentOS	(6	or	later),	RHEL	(6	or	later),	Ubuntu	(14.04	or	later),	OS	X,	and	Windows.

Requirements

214

Software	Requirements
Brooklyn	requires	Java	8	(JRE	or	JDK)	or	later.	OpenJDK	is	recommended.	Brooklyn	has	also	been	tested	on	the
Oracle	JVM	and	IBM	J9.

Configuration	Requirements

Ports

The	ports	used	by	Brooklyn	are:

8443	for	https,	to	expose	the	web-console	and	REST	api.
8081	for	http,	to	expose	the	web-console	and	REST	api.

Whether	to	use	https	rather	than	http	is	configurable	using	the	CLI	option		--https	;	the	port	to	use	is	configurable
using	the	CLI	option		--port	<port>	.

To	enable	remote	Brooklyn	access,	ensure	these	ports	are	open	in	the	firewall.	For	example,	to	open	port	8443	in
iptables,	ues	the	command:

/sbin/iptables	-I	INPUT	-p	TCP	--dport	8443	-j	ACCEPT

Locale

Brooklyn	expects	a	sensible	set	of	locale	information	and	time	zones	to	be	available;	without	this,	some	time-and-date
handling	may	be	surprising.

Brooklyn	parses	and	reports	times	according	to	the	time	zone	set	at	the	server.	If	Brooklyn	is	targetting	geographically
distributed	users,	it	is	normally	recommended	that	the	server's	time	zone	be	set	to	UTC.

User	Setup

It	is	normally	recommended	that	Brooklyn	run	as	a	non-root	user	with	keys	installed	to		~/.ssh/id_rsa{,.pub}	.

Linux	Kernel	Entropy

Check	that	the	linux	kernel	entropy	is	sufficient.

System	Resource	Limits

Check	that	the	ulimit	values	are	sufficiently	high.

Requirements

215

This	guide	provides	all	necessary	information	to	upgrade	Apache	Brooklyn	for	both	the	RPM/DEB	and	Tarball
packages.

Backwards	Compatibility
Apache	Brooklyn	version	0.12.0	onward	runs	primarily	inside	a	Karaf	container.	When	upgrading	from	0.11.0	or
below,	this	update	changes	the	mechanisms	for	launching	Brooklyn.	This	will	impact	any	custom	scripting	around	the
launching	of	Brooklyn,	and	the	supplying	of	command	line	arguments.

Use	of	the		lib/dropins		and		lib/patch		folders	will	no	longer	work	(because	Karaf	does	not	support	that	kind	of
classloading).	Instead,	code	must	be	built	and	installed	as	OSGi	bundles.

Upgrading
Use	of	RPM	and	DEB	is	now	recommended	where	possible,	rather	than	the	tar.gz.	This	entirely	replaces	the
previous	install.

CentOS	7.x	is	recommended	over	CentOS	6.x	(note:	the	RPM	will	not	work	on	CentOS	6.x)

Upgrade	from	Apache	Brooklyn	0.12.0	onward

{::options	parse_block_html="true"	/}

RPM	/	DEB	Packages
Tarball

1.	**Important!**	Backup	persisted	state	and	custom	configuration,	in	case	you	need	to	rollback	to	a	previous	version.
1.	By	default,	persisted	state	is	located	at	`/var/lib/brooklyn`.	The	`persistenceDir`	and	`persistenceLocation`	are
configured	in	the	file	`/etc/brooklyn/org.apache.brooklyn.osgilauncher.cfg`.	The	persistence	details	will	be	logged	in
`/var/log/brooklyn/brooklyn.info.log`	at	startup	time.	2.	Configuration	files	are	in	`/etc/brooklyn`.	2.	Upgrade	Apache
Brooklyn:	1.	[Download](../misc/download.html)	the	new	RPM/DEB	package	2.	Upgrade	Apache	Brooklyn:	#	CentOS	/
RHEL	sudo	yum	upgrade	apache-brooklyn-xxxx.noarch.rpm	#	Ubuntu	/	Debian	sudo	dpkg	-i	apache-brooklyn-
xxxx.all.deb	If	there	are	conflicts	in	configuration	files	(located	in	`/etc/brooklyn`),	the	upgrade	will	behave	differently
based	on	the	package	you	are	using:	*	RPM:	the	upgrade	will	keep	the	previously	installed	one	and	save	the	new
version,	with	the	suffix	`.rpmsave`.	You	will	then	need	to	check	and	manually	resolve	those.	*	DEB:	the	upgrade	will
ask	you	what	to	do.	3.	Start	Apache	Brooklyn:	#	CentOS	7	/	RHEL	sudo	systemctl	start	brooklyn	#	CentOS	6	and
older	sudo	initctl	start	brooklyn	#	Ubuntu	/	Debian	start	brooklyn	Wait	for	Brooklyn	to	be	running	(i.e.	its	web-console	is
responsive)
1.	Stop	Apache	Brooklyn:	./bin/stop	brooklyn	If	this	does	not	stop	it	within	a	few	seconds	(as	checked	with	`sudo	ps
aux	|	grep	karaf`),	then	use	`sudo	kill	`	2.	**Important!**	Backup	persisted	state	and	custom	configuration.	1.	By
default,	persisted	state	is	located	at	`~/.brooklyn/brooklyn-persisted-state`.	The	`persistenceDir`	and
`persistenceLocation`	are	configured	in	the	file	`./etc/org.apache.brooklyn.osgilauncher.cfg`.	The	persistence	details
will	be	logged	in	`./log/brooklyn.info.log`	at	startup	time.	2.	Configuration	files	are	in	`./etc/`.	Any	changes	to	these
configuration	files	will	need	to	be	re-applied	after	reinstalling	Brooklyn.	3.	Install	new	version	of	Apache	Brooklyn:	1.
[Download](../misc/download.html)	the	new	tarball	zip	package.	2.	Install	Brooklyn:	tar	-zxf	apache-brooklyn-
xxxx.tar.gz	cd	apache-brooklyn-xxxx	4.	Restore	any	changes	to	the	configuration	files	(see	step	2).	5.	Validate	that	the
new	release	works,	by	starting	in	"HOT_BACKUP"	mode.	1.	Before	starting	Brooklyn,	reconfigure
`./etc/org.apache.brooklyn.osgilauncher.cfg`	and	set	`highAvailabilityMode=HOT_BACKUP`.	This	way	when	Brooklyn
is	started,	it	will	only	read	and	validate	the	persisted	state	and	will	not	write	into	it.	2.	Start	Apache	Brooklyn:	./bin/start
brooklyn	3.	Check	whether	you	have	rebind	ERROR	messages	in	`./log/brooklyn.info.log`,	e.g.	`sudo	grep	-E
"WARN|ERROR"	/opt/brooklyn/log/brooklyn.debug.log`.	If	you	do	not	have	such	errors	you	can	proceed.	4.	Stop

Upgrade

216

https://en.wikipedia.org/wiki/OSGi#Bundles

Apache	Brooklyn:	./bin/stop	brooklyn	5.	Change	the	`highAvailabilityMode`	to	the	default	(AUTO)	by	commenting	it	out
in	`./etc/org.apache.brooklyn.osgilauncher.cfg`.	6.	Start	Apache	Brooklyn:	./bin/start	brooklyn	Wait	for	Brooklyn	to	be
running	(i.e.	its	web-console	is	responsive).	7.	Update	the	catalog,	using	the	br	command:	1.	[Download]
(https://brooklyn.apache.org/download/index.html#command-line-client)	the	br	tool.	2.	Login	with	br:	`br	login
http://localhost:8081	`.	3.	Update	the	catalog:	`br	catalog	add	/opt/brooklyn/catalog/catalog.bom`.

Upgrade	from	Apache	Brooklyn	0.11.0	and	below

RPM	/	DEB	Packages
Tarball

1.	Stop	Apache	Brooklyn:	#	CentOS	7	/	RHEL	sudo	systemctl	stop	brooklyn	#	CentOS6	and	older	sudo	initctl	stop
brooklyn	#	Ubuntu	/	Debian	stop	brooklyn	If	this	does	not	stop	it	within	a	few	seconds	(as	checked	with	`sudo	ps	aux	|
grep	brooklyn`),	then	use	`sudo	kill	`.	2.	**Important!**	Backup	persisted	state	and	custom	configuration.	1.	By	default,
persisted	state	is	located	at	`/opt/brooklyn/.brooklyn/`..	The	`persistenceDir`	and	`persistenceLocation`	are	configured
in	the	file	`./etc/org.apache.brooklyn.osgilauncher.cfg`.	The	persistence	details	will	be	logged	in
`./log/brooklyn.info.log`	at	startup	time.	2.	Configuration	files	are	in	`./etc/`.	Any	changes	to	these	configuration	files	will
need	to	be	re-applied	after	reinstalling	Brooklyn.	3.	Delete	the	existing	Apache	Brooklyn	install:	1.	Remove	Brooklyn
package:	#	CentOS	/	RHEL	sudo	yum	erase	apache-brooklyn	#	Ubuntu	/	Debian	sudo	dpkg	-r	apache-brooklyn	2.	On
CentOS	7	run	`sudo	systemctl	daemon-reload`.	3.	Confirm	that	Brooklyn	is	definitely	not	running	(see	step	1	above).
4.	Delete	the	Brooklyn	install	directory:	`sudo	rm	-r	/opt/brooklyn`	as	well	as	the	Brooklyn	log	directory:	`sudo	rm	-r
/var/log/brooklyn/`	4.	Make	sure	you	have	Java	8.	By	default	CentOS	images	come	with	JRE6	which	is	incompatible
version	for	Brooklyn.	If	CentOS	is	prior	to	6.8	upgrade	nss:	`yum	-y	upgrade	nss`	5.	Install	new	version	of	Apache
Brooklyn:	1.	[Download](../misc/download.html)	the	new	RPM/DEB	package.	2.	Install	Apache	Brooklyn:	#	CentOS	/
RHEL	sudo	yum	install	apache-brooklyn-xxxx.noarch.rpm	#	Ubuntu	/	Debian	sudo	dpkg	-i	apache-brooklyn-
xxxx.all.deb	6.	Restore	the	persisted	state	and	configuration.	1.	Stop	the	Brooklyn	service:	#	CentOS	7	/	RHEL	sudo
systemctl	stop	brooklyn	#	CentOS	6	and	older	sudo	initctl	stop	brooklyn	#	Ubuntu	/	Debian	stop	brooklyn	Confirm	that
Brooklyn	is	no	longer	running	(see	step	1).	2.	Restore	the	persisted	state	directory	into	`/var/lib/brooklyn`	and	any
changes	to	the	configuration	files	(see	step	2).	Ensure	owner/permissions	are	correct	for	the	persisted	state	directory,
e.g.:	`sudo	chown	-r	brooklyn:brooklyn	/var/lib/brooklyn`	7.	Validate	that	the	new	release	works,	by	starting	in
"HOT_BACKUP"	mode.	1.	Before	starting	Brooklyn,	reconfigure	`/etc/brooklyn/org.apache.brooklyn.osgilauncher.cfg`
and	set	`highAvailabilityMode=HOT_BACKUP`.	This	way	when	Brooklyn	is	started,	it	will	only	read	and	validate	the
persisted	state	and	will	not	write	into	it.	2.	Start	Apache	Brooklyn:	#	CentOS	7	/	RHEL	sudo	systemctl	start	brooklyn	#
CentOS	6	and	older	sudo	initctl	start	brooklyn	#	Ubuntu	/	Debian	start	brooklyn	3.	Check	whether	you	have	rebind
ERROR	messages	in	the	Brooklyn	logs,	e.g.	`sudo	grep	-E	"Rebind|WARN|ERROR"
/var/log/brooklyn/brooklyn.debug.log`.	If	you	do	not	have	such	errors	you	can	proceed.	4.	Stop	Brooklyn:	#	CentOS	7	/
RHEL	sudo	systemctl	stop	brooklyn	#	CentOS	6	and	older	sudo	initctl	stop	brooklyn	#	Ubuntu	/	Debian	stop	brooklyn
5.	Change	the	`highAvailabilityMode`	to	the	default	(AUTO)	by	commenting	it	out	in
`./etc/org.apache.brooklyn.osgilauncher.cfg`.	8.	Start	Apache	Brooklyn:	#	CentOS	7	/	RHEL	sudo	systemctl	start
brooklyn	#	CentOS	6	and	older	sudo	initctl	start	brooklyn	#	Ubuntu	/	Debian	start	brooklyn	Wait	for	Brooklyn	to	be
running	(i.e.	its	web-console	is	responsive).	9.	Update	the	catalog,	using	the	br	command:	1.	Download	the	br	tool	(i.e.
from	the	"CLI	Download"	link	in	the	web-console).	2.	Login	with	br:	`br	login	http://localhost:8081	`.	3.	Update	the
catalog:	`br	catalog	add	/opt/brooklyn/catalog/catalog.bom`.
Same	instructions	as	above.

Rollback
This	section	applies	only	with	you	are	using	the	RPM/DEB	packages.	To	perform	a	rollback,	please	follow	these
instructions:

#	CentOS	/	RHEL

Upgrade

217

yum	downgrade	apache-brooklyn.noarch

#	Ubuntu	Debian

dpkg	-i	apache-brooklyn-xxxx.all.deb

Note	that	to	downgrade	a	DEB	package	is	essentially	installing	a	previous	version	therefore	you	need	to	download	the
version	you	want	to	downgrade	to	before	hand.

How	to	stop	your	service
On	systemd:

systemctl	stop	brooklyn

On	upstart:

stop	brooklyn

Web	login	credentials
User	credentials	should	now	be	recorded	in		brooklyn.cfg	.

Brooklyn	will	still	read	them	from	both		brooklyn.cfg		and		~/.brooklyn/brooklyn.properties	.

Configure	a	username/password	by	modifying		brooklyn.cfg	.	An	example	entry	is:

brooklyn.webconsole.security.users=admin

brooklyn.webconsole.security.user.admin.password=password2

Persistence
If	you	have	persisted	state	you	wish	to	rebind	to,	persistence	is	now	configured	in	the	following	files:

	brooklyn.cfg	

	org.apache.brooklyn.osgilauncher.cfg	

For	example,	to	use	S3	for	the	persisted	state,	add	the	following	to		brooklyn.cfg	:

brooklyn.location.named.aws-s3-eu-west-1:aws-s3:eu-west-1

brooklyn.location.named.aws-s3-eu-west-1.identity=<ADD	CREDS>

brooklyn.location.named.aws-s3-eu-west-1.credential=<ADD	CREDS>

To	continue	the	S3	example,	for	the	persisted	state,	add	the	following	to		org.apache.brooklyn.osgilauncher.cfg	:

persistenceLocation=aws-s3-eu-west-1

persistenceDir=<ADD	HERE>

Apache	Brooklyn	should	be	stopped	before	this	file	is	modified,	and	then	restarted	with	the	new	configuration.

Note	that	you	can	not	store	the	credentials	(for	e.g.	aws-s3-eu-west-1)	in	the	catalog	because	that	catalog	is
stored	in	the	persisted	state.	Apache	Brooklyn	needs	to	know	it	in	order	to	read	the	persisted	state	at	startup
time.

Upgrade

218

If	binding	to	existing	persisted	state,	an	additional	command	is	required	to	update	the	existing	catalog	with	the
Brooklyn	0.12.0	versions.	Assuming	Brooklyn	has	been	installed	to		/opt/brooklyn		(as	is	done	by	the	RPM	and	DEB):

				br	catalog	add	/opt/brooklyn/catalog/catalog.bom

All	existing	custom	jars	previously	added	to	lib/plugins	(e.g.	for	Java-based	entities)	need	to	be	converted	to	OSGi
bundles,	and	installed	in	Karaf.	The	use	of	the	"brooklyn.libraries"	section	in	catalog.bom	files	will	continue	to	work.

Upgrade

219

Brooklyn	Server

Web-console	and	REST	api

Users	are	strongly	encouraged	to	use	HTTPS,	rather	than	HTTP.

The	use	of	LDAP	is	encouraged,	rather	than	basic	auth.

Configuration	of	"entitlements"	is	encouraged,	to	lock	down	access	to	the	REST	api	for	different	users.

Brooklyn	user

Users	are	strongly	discouraged	from	running	Brooklyn	as	root.

For	production	use-cases	(i.e.	where	Brooklyn	will	never	deploy	to	"localhost"),	the	user	under	which	Brooklyn	is
running	should	not	have		sudo		rights.

Persisted	State

Use	of	an	object	store	is	recommended	(e.g.	using	S3	compliant	or	Swift	API)	-	thus	making	use	of	the	security
features	offered	by	the	chosen	object	store.

File-based	persistence	is	also	supported.	Permissions	of	the	files	will	automatically	be	600	(i.e.	read-write	only	by	the
owner).	Care	should	be	taken	for	permissions	of	the	relevant	mount	points,	disks	and	directories.

Credential	Storage
For	credential	storage,	users	are	strongly	encouraged	to	consider	using	the	"externalised	configuration"	feature.	This
allows	credentials	to	be	retrieved	from	a	store	managed	by	you,	rather	than	being	stored	within	YAML	blueprints	or
	brooklyn.cfg	.

A	secure	credential	store	is	strongly	recommended,	such	as	use	of	HashiCorp's	Vault	-	see
	org.apache.brooklyn.core.config.external.vault.VaultExternalConfigSupplier	.

Infrastructure	Access

Cloud	Credentials	and	Access

Users	are	strongly	encouraged	to	create	separate	cloud	credentials	for	Brooklyn's	API	access.

Users	are	also	encouraged	to	(where	possible)	configure	the	cloud	provider	for	only	minimal	API	access	(e.g.	using
AWS	IAM).

VM	Image	Credentials

Users	are	strongly	discouraged	from	using	hard-coded	passwords	within	VM	images.	Most	cloud	providers/APIs
provide	a	mechanism	to	instead	set	an	auto-generated	password	or	to	create	an	entry	in		~/.ssh/authorized_keys	
(prior	to	the	VM	being	returned	by	the	cloud	provider).

If	a	hard-coded	credential	is	used,	then	Brooklyn	can	be	configured	with	this	"loginUser"	and	"loginUser.password"	(or
"loginUser.privateKeyData"),	and	can	change	the	password	and	disable	root	login.

Security	Guidelines

220

https://www.vaultproject.io

VM	Users

It	is	strongly	discouraged	to	use	the	root	user	on	VMs	being	created	or	managed	by	Brooklyn.	SSH-ing	on	the	VM
should	be	done	on	rare	cases	such	as	initial	Apache	Brooklyn	setup,	Apache	Brooklyn	upgrade	and	other	important
maintenance	occasions.

SSH	keys

Users	are	strongly	encouraged	to	use	SSH	keys	for	VM	access,	rather	than	passwords.

This	SSH	key	could	be	a	file	on	the	Brooklyn	server.	However,	a	better	solution	is	to	use	the	"externalised
configuration"	to	return	the	"privateKeyData".	This	better	supports	upgrading	of	credentials.

Install	Artifact	Downloads
When	Brooklyn	executes	scripts	on	remote	VMs	to	install	software,	it	often	requires	downloading	the	install	artifacts.
For	example,	this	could	be	from	an	RPM	repository	or	to	retrieve		.zip		installers.

By	default,	the	RPM	repositories	will	be	whatever	the	VM	image	is	configured	with.	For	artifacts	to	be	downloaded
directly,	these	often	default	to	the	public	site	(or	mirror)	for	that	software	product.

Where	users	have	a	private	RPM	repository,	it	is	strongly	encouraged	to	ensure	the	VMs	are	configured	to	point	at
this.

For	other	artifacts,	users	should	consider	hosting	these	artifacts	in	their	own	web-server	and	configuring	Brooklyn	to
use	this.	See	the	documentation	for
	org.apache.brooklyn.core.entity.drivers.downloads.DownloadProducerFromProperties	.

Security	Guidelines

221

Troubleshooting

222

Further	documentation	specific	to	this	version	of	Brooklyn	includes:

Also	see	the	other	versions	or	general	documentation.

Other	0.12.0	Resources

223

The	Basics
The	full	build	requires	the	following	software	to	be	installed:

Maven	(v3.1+)
Java	(v1.7+,	1.8	recommended)
Go	(v1.6+)	[if	building	the	CLI	client]
rpm	tools	[if	building	the	dist	packages	for	those	platforms]

With	these	in	place,	you	should	be	able	to	build	everything	with	a:

%	mvn	clean	install

Alternatively	you	can	build	most	things	with	just	Java	and	Maven	installed	using:

mvn	clean	install	-Dno-go-client	-Dno-rpm`

Other	tips:

Add		-DskipTests		to	skip	tests	(builds	much	faster,	but	not	as	safe)

You	may	need	more	JVM	memory,	e.g.	at	the	command-line	(or	in		.profile):

	export	MAVEN_OPTS="-Xmx1024m	-Xms512m"	

Run		-PIntegration		to	run	integration	tests,	or		-PLive		to	run	live	tests	(tests	described	here)

You	may	need	to	install		rpm		package	to	build	RPM	packages:		brew	install	rpm		for	Mac	OS,		apt-get	install
rpm		for	Ubuntu,		yum	install	rpm		for	Centos/RHEL.	On	Mac	OS	you	may	also	need	to	set		%_tmppath	/tmp		in
	~/.rpmmacros	.

If	you're	looking	at	the	maven	internals,	note	that	many	of	the	settings	are	inherited	from	parent	projects	(see	for
instance		brooklyn-server/parent/pom.xml)

For	tips	on	building	within	various	IDEs,	look	here.

When	the	RAT	Bites
We	use	RAT	to	ensure	that	all	files	are	compliant	to	Apache	standards.	Most	of	the	time	you	shouldn't	see	it	or	need
to	know	about	it,	but	if	it	detects	a	violation,	you'll	get	a	message	such	as:

[ERROR]	Failed	to	execute	goal	org.apache.rat:apache-rat-plugin:0.10:check	(default)	on	project	brooklyn-parent

:	Too	many	files	with	unapproved	license:	1	See	RAT	report	in:	/Users/alex/Data/cloudsoft/dev/gits/brooklyn/tar

get/rat.txt	->	[Help	1]

If	there's	a	problem,	see	the	file		rat.txt		in	the		target		directory	of	the	failed	project.	(Maven	will	show	you	this	link
in	its	output.)

Often	the	problem	is	one	of	the	following:

You've	added	a	file	which	requires	the	license	header	but	doesn't	have	it

Resolution:	Simply	copy	the	header	from	another	file

You've	got	some	temporary	files	which	RAT	things	should	have	headers

Maven	Build

224

Resolution:	Move	the	files	away,	add	headers,	or	turn	off	RAT	(see	below)

The	project	structure	has	changed	and	you	have	stale	files	(e.g.	in	a		target		directory)

Resolution:	Remove	the	stale	files,	e.g.	with		git	clean	-df		(and	if	needed	a		find	.	-name	target	-prune	-exec
rm	-rf	{}	\;		to	delete	folders	named		target)

To	disable	RAT	checking	on	a	build,	set		rat.ignoreErrors	,	e.g.		mvn	-Drat.ignoreErrors=true	clean	install	.	(But
note	you	will	need	RAT	to	pass	in	order	for	a	PR	to	be	accepted!)

If	there	is	a	good	reason	that	a	file,	pattern,	or	directory	should	be	permanently	ignored,	that	is	easy	to	add	inside	the
root		pom.xml	.

Other	Handy	Hints
On	some	Ubuntu	(e.g.	10.4	LTS)	maven	v3	is	not	currently	available	from	the	repositories.	Some	instructions	for
installing	at	are	at	superuser.com.

The	mvnf	script	(get	the	gist	here)	simplifies	building	selected	projects,	so	if	you	just	change	something	in
	software-webapp		and	then	want	to	re-run	the	examples	you	can	do:

	examples/simple-web-cluster%	mvnf	../../{software/webapp,usage/all}	

Appendix:	Sample	Output
A	healthy	build	will	look	something	like	the	following,	including	a	few	warnings	(which	we	have	looked	into	and
understand	to	be	benign	and	hard	to	get	rid	of	them,	although	we'd	love	to	if	anyone	can	help!):

%	mvn	clean	install

[INFO]	Scanning	for	projects...

[INFO]	--

[INFO]	Reactor	Build	Order:

[INFO]	

[INFO]	Brooklyn	REST	JavaScript	Web	GUI

[INFO]	Brooklyn	Server	Root

[INFO]	Brooklyn	Parent	Project

[INFO]	Brooklyn	Test	Support	Utilities

[INFO]	Brooklyn	Logback	Includable	Configuration

[INFO]	Brooklyn	Common	Utilities

...

[WARNING]	Ignoring	project	type	war	-	supportedProjectTypes	=	[jar]

...

[WARNING]	We	have	a	duplicate	org/xmlpull/v1/XmlPullParser.class	in	~/.m2/repository/xpp3/xpp3_min/1.1.4c/xpp3_

min-1.1.4c.jar

...

[INFO]	—	maven-assembly-plugin:2.3:single	(build-distribution-dir)	@	brooklyn-dist	—

[INFO]	Reading	assembly	descriptor:	src/main/config/build-distribution-dir.xml

{%	comment	%}BROOKLYN_VERSION{%	endcomment	%}[WARNING]	Cannot	include	project	artifact:	io.brooklyn:brooklyn-di

st:jar:0.13.0-SNAPSHOT;	it	doesn't	have	an	associated	file	or	directory.

[INFO]	Copying	files	to	~/repos/apache/brooklyn/usage/dist/target/brooklyn-dist

[WARNING]	Assembly	file:	~/repos/apache/brooklyn/usage/dist/target/brooklyn-dist	is	not	a	regular	file	(it	may	

be	a	directory).	It	cannot	be	attached	to	the	project	build	for	installation	or	deployment.

...

Maven	Build

225

http://superuser.com/questions/298062/how-do-i-install-maven-3
https://gist.github.com/2241800

[INFO]	—	maven-assembly-plugin:2.3:single	(build-distribution-archive)	@	brooklyn-dist	—

[INFO]	Reading	assembly	descriptor:	src/main/config/build-distribution-archive.xml

{%	comment	%}BROOKLYN_VERSION{%	endcomment	%}[WARNING]	Cannot	include	project	artifact:	io.brooklyn:brooklyn-di

st:jar:0.13.0-SNAPSHOT;	it	doesn't	have	an	associated	file	or	directory.

{%	comment	%}BROOKLYN_VERSION{%	endcomment	%}[INFO]	Building	tar:	/Users/aled/repos/apache/brooklyn/usage/dist/

target/brooklyn-0.13.0-SNAPSHOT-dist.tar.gz

{%	comment	%}BROOKLYN_VERSION{%	endcomment	%}[WARNING]	Cannot	include	project	artifact:	io.brooklyn:brooklyn-di

st:jar:0.13.0-SNAPSHOT;	it	doesn't	have	an	associated	file	or	directory.

...

[WARNING]	Don't	override	file	/Users/aled/repos/apache/brooklyn/usage/archetypes/quickstart/target/test-classes

/projects/integration-test-1/project/brooklyn-sample/src/main/resources/sample-icon.png

...

[INFO]	Reactor	Summary:

[INFO]	

[INFO]	Brooklyn	Parent	Project	SUCCESS	[3.072s]

[INFO]	Brooklyn	Utilities	to	Support	Testing	(listeners	etc)		SUCCESS	[3.114s]

[INFO]	Brooklyn	Logback	Includable	Configuration	SUCCESS	[0.680s]

[INFO]	Brooklyn	Common	Utilities	SUCCESS	[7.263s]

[INFO]	Brooklyn	Groovy	Utilities	SUCCESS	[5.193s]

[INFO]	Brooklyn	API	SUCCESS	[2.146s]

[INFO]	Brooklyn	Test	Support	SUCCESS	[2.517s]

[INFO]	CAMP	Server	Parent	Project	SUCCESS	[0.075s]

[INFO]	CAMP	Base	...	SUCCESS	[4.079s]

[INFO]	Brooklyn	REST	Swagger	Apidoc	Utilities	SUCCESS	[1.983s]

[INFO]	Brooklyn	Logback	Configuration	SUCCESS	[0.625s]

[INFO]	CAMP	Server	SUCCESS	[5.446s]

[INFO]	Brooklyn	Core	SUCCESS	[1:24.122s]

[INFO]	Brooklyn	Policies	SUCCESS	[44.425s]

[INFO]	Brooklyn	Hazelcast	Storage	SUCCESS	[7.143s]

[INFO]	Brooklyn	Jclouds	Location	Targets	SUCCESS	[16.488s]

[INFO]	Brooklyn	Secure	JMXMP	Agent	SUCCESS	[8.634s]

[INFO]	Brooklyn	JMX	RMI	Agent	SUCCESS	[2.315s]

[INFO]	Brooklyn	Software	Base	SUCCESS	[28.538s]

[INFO]	Brooklyn	Network	Software	Entities	SUCCESS	[3.896s]

[INFO]	Brooklyn	OSGi	Software	Entities	SUCCESS	[4.589s]

[INFO]	Brooklyn	Web	App	Software	Entities	SUCCESS	[17.484s]

[INFO]	Brooklyn	Messaging	Software	Entities	SUCCESS	[7.106s]

[INFO]	Brooklyn	Database	Software	Entities	SUCCESS	[5.229s]

[INFO]	Brooklyn	NoSQL	Data	Store	Software	Entities	SUCCESS	[11.901s]

[INFO]	Brooklyn	Monitoring	Software	Entities	SUCCESS	[4.027s]

[INFO]	Brooklyn	CAMP	REST	API	SUCCESS	[15.285s]

[INFO]	Brooklyn	REST	API	SUCCESS	[4.489s]

[INFO]	Brooklyn	REST	Server	SUCCESS	[30.270s]

[INFO]	Brooklyn	REST	Client	SUCCESS	[7.007s]

[INFO]	Brooklyn	REST	JavaScript	Web	GUI	SUCCESS	[24.397s]

[INFO]	Brooklyn	Launcher	SUCCESS	[15.923s]

[INFO]	Brooklyn	Command	Line	Interface	SUCCESS	[9.279s]

[INFO]	Brooklyn	All	Things	SUCCESS	[13.875s]

[INFO]	Brooklyn	Distribution	SUCCESS	[49.370s]

[INFO]	Brooklyn	Quick-Start	Project	Archetype	SUCCESS	[12.053s]

[INFO]	Brooklyn	Examples	Aggregator	Project	SUCCESS	[0.085s]

[INFO]	Brooklyn	Examples	Support	Aggregator	Project	-	Webapps		SUCCESS	[0.053s]

[INFO]	hello-world-webapp	Maven	Webapp	SUCCESS	[0.751s]

[INFO]	hello-world-sql-webapp	Maven	Webapp	SUCCESS	[0.623s]

[INFO]	Brooklyn	Simple	Web	Cluster	Example	SUCCESS	[5.398s]

[INFO]	Brooklyn	Global	Web	Fabric	Example	SUCCESS	[3.176s]

[INFO]	Brooklyn	Simple	Messaging	Publish-Subscribe	Example		SUCCESS	[3.217s]

[INFO]	Brooklyn	NoSQL	Cluster	Examples	SUCCESS	[6.790s]

[INFO]	Brooklyn	QA	SUCCESS	[7.117s]

[INFO]	--

[INFO]	BUILD	SUCCESS

[INFO]	--

[INFO]	Total	time:	8:33.983s

[INFO]	Finished	at:	Mon	Jul	21	14:56:46	BST	2014

[INFO]	Final	Memory:	66M/554M

Maven	Build

226

[INFO]	--

Maven	Build

227

Gone	are	the	days	when	IDE	integration	always	just	works...	Maven	and	Eclipse	fight,	neither	quite	gets	along
perfectly	with	Groovy,	git	branch	switches	(sooo	nice)	can	be	slow,	etc	etc.

But	with	a	bit	of	a	dance	the	IDE	can	still	be	your	friend,	making	it	much	easier	to	run	tests	and	debug.

As	a	general	tip,	don't	always	trust	the	IDE	to	build	correctly;	if	you	hit	a	snag,	do	a	command-line		mvn	clean	install	
(optionally	with		-DskipTests		and/or		-Dno-go-client)	then	refresh	the	project.

See	instructions	below	for	specific	IDEs.

Eclipse
The	default	Eclipse	downloads	already	include	all	of	the	plugins	needed	for	working	with	the	Brooklyn	project.
Optionally	you	can	install	the	Groovy	and	TestNG	plugins,	but	they	are	not	required	for	building	the	project.	You	can
install	these	using	Help	->	Install	New	Software,	or	from	the	Eclipse	Marketplace:

Groovy	Plugin:	GRECLIPSE	from	dist.springsource.org/snapshot/GRECLIPSE/e4.5/;	Be	sure	to	include	Groovy
2.3	compiler	support	and	Maven-Eclipse	(m2e)	support.	More	details	including	download	sites	for	other	versions
can	be	found	at	the	Groovy	Eclipse	Plugin	site.

TestNG	Plugin:	beust	TestNG	from	beust.com/eclipse

As	of	this	writing,	Eclipse	4.5	and	Eclipse	4.4	are	commonly	used,	and	the	codebase	can	be	imported	(Import	->
Existing	Maven	Projects)	and	successfully	built	and	run	inside	an	IDE.	However	there	are	quirks,	and	mileage	may
vary.	Disable		Build	Automatically		from	the		Project		menu	if	the	IDE	is	slow	to	respond.

If	you	encounter	issues,	the	following	hints	may	be	helpful:

If	m2e	reports	import	problems,	it	is	usually	okay	(even	good)	to	mark	all	to	"Resolve	All	Later".	The	build-helper
connector	is	useful	if	you're	prompted	for	it,	but	do	not	install	the	Tycho	OSGi	configurator	(this	causes	show-
stopping	IAE's,	and	we	don't	need	Eclipse	to	make	bundles	anyway).	You	can	manually	mark	as	permanently
ignored	certain	errors;	this	updates	the	pom.xml	(and	should	be	current).

A	quick	command-line	build	(mvn	clean	install	-DskipTests	-Dno-go-client)	followed	by	a	workspace	refresh
can	be	useful	to	re-populate	files	which	need	to	be	copied	to		target/	

m2e	likes	to	put		excluding="**"		on		resources		directories;	if	you're	seeing	funny	missing	files	(things	like	not
resolving	jclouds/aws-ec2	locations	or	missing	WARs),	try	building	clean	install	from	the	command-line	then	doing
Maven	->	Update	Project	(clean	uses	a	maven-replacer-plugin	to	fix		.classpath	s).	Alternatively	you	can	go
through	and	remove	these	manually	in	Eclipse	(Build	Path	->	Configure)	or	the	filesystem,	or	use	the	following
command	to	remove	these	rogue	blocks	in	the	generated		.classpath		files:

%	find	.	-name	.classpath	-exec	sed	-i.bak	's/[]*..cluding="[*\/]*\(\.java\)*"//g'	{}	\;

You	may	need	to	ensure		src/main/{java,resources}		is	created	in	each	project	dir,	if	(older	versions)	complain
about	missing	directories,	and	the	same	for		src/test/{java,resources}		if	there	are	tests	(src/test		exists):

find	.	\(-path	"*/src/main"	-or	-path	"*/src/test"	\)	-exec	echo	{}	\;	-exec	mkdir	-p	{}/{java,resources}	\;

If	the	pain	starts	to	be	too	much,	come	find	us	on	IRC	#brooklyncentral	or	elsewhere	and	we	can	hopefully	share	our
pearls.	(And	if	you	have	a	tip	we	haven't	mentioned	please	let	us	know	that	too!)

IntelliJ	IDEA

IDE	Setup

228

http://dist.springsource.org/snapshot/GRECLIPSE/e4.5/
http://docs.groovy-lang.org/latest/html/documentation/#section-groovyeclipse
http://beust.com/eclipse

To	develop	or	debug	Brooklyn	in	IntelliJ,	you	will	need	to	ensure	that	the	Groovy	and	TestNG	plugins	are	installed	via
the	IntelliJ	IDEA	|	Preferences	|	Plugins	menu.	Once	installed,	you	can	open	Brooklyn	from	the	root	folder,	(e.g.
	~/myfiles/brooklyn)	which	will	automatically	open	the	subprojects.

Brooklyn	has	informally	standardized	on	arranging		import		statements	as	per	Eclipse's	default	configuration.	IntelliJ's
default	configuration	is	different,	which	can	result	in	unwanted	"noise"	in	commits	where	imports	are	shuffled
backward	and	forward	between	the	two	types	-	PRs	which	do	this	will	likely	fail	the	review.	To	avoid	this,	reconfigure
IntelliJ	to	organize	imports	similar	to	Eclipse.	See	this	StackOverflow	answer	for	a	suitable	configuration.

Netbeans
Tips	from	Netbeans	users	wanted!

Debugging	Tips
To	debug	Brooklyn,	create	a	launch	configuration	which	launches	the		BrooklynJavascriptGuiLauncher		class.	NOTE:
You	may	need	to	add	additional	projects	or	folders	to	the	classpath	of	the	run	configuration	(e.g.	add	the	brooklyn-
software-nosql	project	if	you	wish	to	deploy	a	MongoDBServer).	You	will	also	need	to	ensure	that	the	working
directory	is	set	to	the	jsgui	folder.	For	IntelliJ,	you	can	set	the	'Working	directory'	of	the	Run/Debug	Configuration	to
	$MODULE_DIR$/../jsgui	.	For	Eclipse,	use	the	default	option	of		${workspace_loc:brooklyn-jsgui}	.

To	debug	the	jsgui	(the	Brooklyn	web	console),	you	will	need	to	build	Brooklyn	with	-DskipOptimization	to	prevent	the
build	from	minifying	the	javascript.	When	building	via	the	command	line,	use	the	command		mvn	clean	install	-
DskipOptimization	,	and	if	you	are	using	IntelliJ	IDEA,	you	can	add	the	option	to	the	Maven	Runner	by	clicking	on	the
Maven	Settings	icon	in	the	Maven	Projects	tool	window	and	adding	the		skipOptimization		property	with	no	value.

When	running	at	the	command	line	you	can	enable	remote	connections	so	that	one	can	attach	a	debugger	to	the	Java
process:	Run	Java	with	the	following	on	the	command	line	or	in	JAVA_OPTS:		-
agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=5005	

To	debug	a	brooklyn	instance	that	has	been	run	with	the	above	JAVA_OPTS,	create	a	remote	build	configuration
(IntelliJ	-	Run	|	Edit	Configurations	|	+	|	Remote)	with	the	default	options,	ensuring	the	port	matches	the	address
specified	in	JAVA_OPTS.

IDE	Setup

229

http://stackoverflow.com/a/17194980/68898

Brooklyn	is	split	into	the	following	subprojects:

brooklyn-server:

api:	the	pure-Java	interfaces	for	interacting	with	the	system
camp:	the	components	for	a	server	which	speaks	with	the	CAMP	REST	API	and	understands	the	CAMP
YAML	plan	language
core:	the	base	class	implementations	for	entities	and	applications,	entity	traits,	locations,	policies,	sensor
and	effector	support,	tasks,	and	more
karaf:	OSGi	support
launcher:	for	launching	brooklyn,	either	using	a	main	method	or	invoked	from	the	cli	project
locations:	specific	location	integrations

jclouds:	integration	with	many	cloud	APIs	and	providers	via	Apache	jclouds
logging:	how	we	enable	configurable	logging

logback-includes:	Various	helpful	logback	XML	files	that	can	be	included;	does	not	contain	logback.xml
logback-xml:	Contains	a	logback.xml	that	references	the	include	files	in	brooklyn-logback-includes

parent:	a	meta-project	parent	to	collect	dependencies	and	other	maven	configuration	for	re-use
policy:	collection	of	useful	policies	for	automating	entity	activity
rest:	supporting	the	REST	API

rest-api:	The	API	classes	for	the	Brooklyn	REST	api
rest-client:	A	client	Java	implementation	for	using	the	Brooklyn	REST	API
rest-server:	The	server-side	implementation	of	the	Brooklyn	REST	API

server-cli:	implementation	of	the	Brooklyn	server	command	line	interface;	not	to	be	confused	with	the	client
CLI
software:	support	frameworks	for	creating	entities	which	mainly	launch	software	processes	on	machines

base:	software	process	lifecycle	abstract	classes	and	drivers	(e.g.	SSH)
winrm:	support	for	connecting	to	Windows	machines

test-framework:	provides	Brooklyn	entities	for	building	YAML	tests	for	other	entities
test-support:	provides	Brooklyn-specific	support	for	Java	TestNG	tests,	used	by	nearly	all	projects	in	scope
	test	,	building	on		utils/test-support	
utils:	projects	with	lower	level	utilities

common:	Utility	classes	and	methods	developed	for	Brooklyn	but	not	dependent	on	Brooklyn
groovy:	Groovy	extensions	and	utility	classes	and	methods	developed	for	Brooklyn	but	not	dependent
on	Brooklyn
jmx/jmxmp-ssl-agent:	An	agent	implementation	that	can	be	attached	to	a	Java	process,	to	give	expose
secure	JMXMP
jmx/jmxrmi-agent:	An	agent	implementation	that	can	be	attached	to	a	Java	process,	to	give	expose
JMX-RMI	without	requiring	all	high-number	ports	to	be	open
rest-swagger:	Swagger	REST	API	utility	classes	and	methods	developed	for	Brooklyn	but	not
dependent	on	Brooklyn
test-support:	Test	utility	classes	and	methods	developed	for	Brooklyn	but	not	dependent	on	Brooklyn

brooklyn-ui:	Javascript	web-app	for	the	brooklyn	management	web	console	(builds	a	WAR)

brooklyn-library:	a	library	of	useful	blueprints

examples:	some	canonical	examples
qa:	longevity	and	stress	tests
sandbox:	experimental	items
software:	blueprints	for	software	processes

webapp:	web	servers	(JBoss,	Tomcat),	load-balancers	(Nginx),	and	DNS	(Geoscaling)
database:	relational	databases	(SQL)
nosql:	datastores	other	than	RDBMS/SQL	(often	better	in	distributed	environments)
messaging:	messaging	systems,	including	Qpid,	Apache	MQ,	RabbitMQ

Code	Structure

230

monitoring:	monitoring	tools,	including	Monit
osgi:	OSGi	servers

brooklyn-docs:	the	markdown	source	code	for	this	documentation

brooklyn-dist:	projects	for	packaging	Brooklyn	and	making	it	easier	to	consume

		*	**all**:	maven	project	to	supply	a	shaded	JAR	(containing	all	dependencies)	for	convenience

		*	**archetypes**:	A	maven	archetype	for	easily	generating	the	structure	of	new	downstream	projects

		*	**dist**:	builds	brooklyn	as	a	downloadable	.zip	and	.tar.gz

		*	**scripts**:	various	scripts	useful	for	building,	updating,	etc.	(see	comments	in	the	scripts)

Code	Structure

231

We	have	the	following	tests	groups:

normal	(i.e.	no	group)	--	should	run	quickly,	not	need	internet,	and	not	side	effect	the	machine	(apart	from	a	few
/tmp	files)
Integration	--	deploys	locally,	may	read	and	write	from	internet,	takes	longer.

If	you	change	an	entity,	rerun	the	relevant	integration	test	to	make	sure	all	is	well!

Live	--	deploys	remotely,	may	provision	machines	(but	should	clean	up,	getting	rid	of	them	in	a	try	block)
Live-sanity	--	a	sub-set	of	"Live"	that	can	be	run	regularly;	a	trade-off	of	optimal	code	coverage	for	the	time/cost	of
those	tests.
WIP	--	short	for	"work	in	progress",	this	will	disable	the	test	from	being	run	by	the	normal	brooklyn	maven	profiles,
while	leaving	the	test	enabled	so	that	one	can	work	on	it	in	IDEs	or	run	the	selected	test(s)	from	the	command
line.
Acceptance	--	this	(currently	little-used)	group	is	for	very	long	running	tests,	such	as	soak	tests

To	run	these	from	the	command	line,	use	something	like	the	following:

normal:		mvn	clean	install	
integration:		mvn	clean	verify	-PEssentials,Locations,Entities,Integration	-Dmaven.test.failure.ignore=true	--
fail-never	

Live:		mvn	clean	verify	-PEntities,Locations,Entities,Live	-Dmaven.test.failure.ignore=true	--fail-never	
Live-sanity:		mvn	clean	verify	-PEntities,Locations,Entities,Live-sanity	-Dmaven.test.failure.ignore=true	--
fail-never	

To	run	a	single	test,	use	something	like	the	following:

run	a	single	test	class:		mvn	-Dtest=org.apache.brooklyn.enricher.stock.EnrichersTest	-DfailIfNoTests=false	test	
run	a	single	test	method:		mvn	-Dtest=org.apache.brooklyn.enricher.stock.EnrichersTest#testAdding	-
DfailIfNoTests=false	test	

Tests

232

The	Apache	Software	Foundation,	quite	rightly,	place	a	high	standard	on	code	provenance	and	license	compliance.
The	Apache	license	is	flexible	and	compatible	with	many	other	types	of	license,	meaning	there	is	generally	little
problem	with	incorporating	other	open	source	works	into	Brooklyn	(with	GPL	being	the	notable	exception).	However
diligence	is	required	to	ensure	that	the	project	is	legally	sound,	and	third	parties	are	rightfully	credited	where
appropriate.

This	page	is	an	interpretation	of	the	Apache	Legal	Previously	Asked	Questions	page	as	it	specifically	applies	to	the
Brooklyn	project,	such	as	how	we	organise	our	code	and	the	releases	that	we	make.	However	this	page	is	not
authoritative;	if	there	is	any	conflict	between	this	page	and	the	Previously	Asked	Questions	or	other	Apache	Legal
authority,	they	will	take	precedence	over	this	page.

If	you	have	any	doubt,	please	ask	on	the	Brooklyn	mailing	list,	and/or	the	Apache	Legal	mailing	list.

What	code	licenses	can	we	bundle?
Apache	Legal	maintains	the	"Category	A"	list,	which	is	a	list	of	licenses	that	are	compatible	with	the	Apache	License;
that	is,	code	under	these	licenses	can	be	imported	into	Brooklyn	without	violating	Brooklyn's	Apache	License	nor	the
code's	original	license	(subject	to	correctly	modifying	the		LICENSE		and/or		NOTICE		files;	see	below).

Apache	Legal	also	maintain	the	"Category	X"	list.	Code	licensed	under	a	Category	X	license	cannot	be	imported	into
Brooklyn	without	violating	either	Brooklyn's	Apache	license	or	the	code's	original	license.

There	is	also	a	"Category	B"	list,	which	are	licenses	that	are	compatible	with	the	Apache	license	only	under	certain
circumstances.	In	practice,	this	means	that	we	can	declare	a	dependency	on	a	library	licensed	under	a	Category	B
license,	and	bundle	the	binary	build	of	the	library	in	our	binary	builds,	but	we	cannot	import	its	source	code	into	the
Brooklyn	codebase.

If	the	code	you	are	seeking	to	import	does	not	appear	on	any	of	these	lists,	check	to	see	if	the	license	content	is	the
same	as	a	known	license.	For	example,	many	projects	actually	use	a	BSD	license	but	do	not	label	it	as	"The	BSD
License".	If	you	are	still	not	certain	about	the	license,	please	ask	on	the	Brooklyn	mailing	list,	and/or	the	Apache	Legal
mailing	list.

About	LICENSE	and	NOTICE	files
Apache	Legal	requires	that	each	artifact	that	the	project	releases	contains	a		LICENSE		and		NOTICE		file	that	is	accurate
for	the	contents	of	that	artifact.	This	means	that,	potentially,	every	artifact	that	Brooklyn	releases	may	contain	a
different		LICENSE		and		NOTICE		file.	In	practice,	it's	not	usually	that	complicated	and	there	are	only	a	few	variations	of
these	files	needed.

Furthermore,	accurate		LICENSE		and		NOTICE		files	means	that	it	correctly	attributes	the	contents	of	the	artifact,	and	it
does	not	contain	anything	unnecessary.	This	provision	is	what	prevents	us	creating	a	mega	LICENSE	file	and	using	it
in	every	single	artifact	we	release,	because	in	many	cases	it	will	contain	information	that	is	not	relevant	to	an	artifact.

What	is	a	correct		LICENSE		and		NOTICE		file?

A	correct		LICENSE		file	is	one	that	contains	the	text	of	the	licence	of	any	part	of	the	code.	The	Apache	Software
License	V2	will	naturally	be	the	first	part	of	this	file,	as	it's	the	license	which	we	use	for	all	the	original	code	in
Brooklyn.	If	some	Category	A	licensed	third-party	code	is	bundled	with	this	artifact,	then	the		LICENSE		file	should
identify	what	the	third-party	code	is,	and	include	a	copy	of	its	license.	For	example,	if	jquery	is	bundled	with	a	web
app,	the		LICENSE		file	would	include	a	note	jquery.js,	its	copyright	and	its	license	(MIT),	and	include	a	full	copy	of
the	MIT	license.
A	correct		NOTICE		file	contains	notices	required	by	bundled	third-party	code	above	and	beyond	that	which	we
have	already	noted	in		LICENSE	.	In	practice	modifying		NOTICE		is	rarely	required	beyond	the	initial	note	about

License	Considerations

233

http://www.apache.org/legal/resolved.html
http://www.apache.org/legal/resolved.html#category-a
http://www.apache.org/legal/resolved.html#category-x
http://www.apache.org/legal/resolved.html#category-b

Apache	Brooklyn.	See	What	Are	Required	Third-party	Notices?	for	more	information

Applying	LICENSE	and	NOTICE	files	to	Brooklyn
When	the	Brooklyn	project	makes	a	release,	we	produce	and	release	the	following	types	of	artifacts:

1.	 One	source	release	artifact
2.	 One	binary	release	artifact
3.	 A	large	number	of	Maven	release	artifacts

Therefore,	our	source	release,	our	binary	release,	and	every	one	of	our	Maven	release	artifacts,	must	each	have	their
own,	individually-tailored,		LICENSE		and		NOTICE		files.

To	some	extent,	this	is	automated,	using	scripts	in		usage/dist/licensing	;	but	this	must	be	manually	run,	and
wherever	source	code	is	included	or	a	project	has	insufficient	information	in	its	POM,	you'll	need	to	add	project-
specific	metadata	(with	a	project-specific		source-inclusions.yaml		file	and/or	in	the	dist	project's		overrides.yaml		file).
See	the	README.md	in	that	project's	folder	for	more	information.

Maven	artifacts

Each	Maven	module	will	generally	produce	a	JAR	file	from	code	under		src/main	,	and	a	JAR	file	from	code	under
	src/test	.	(There	are	some	exceptions	which	may	produce	different	artifacts.)

If	the	contents	of	the	module	are	purely	Apache	Brooklyn	original	code,	and	the	outputs	are	JAR	files,	then	no	action
is	required.	The	default	build	process	will	incorporate	a	general-purpose		LICENSE		and		NOTICE		file	into	all	built	JAR
files.		LICENSE		will	contain	just	a	copy	of	the	Apache	Software	License	v2,	and		NOTICE		will	contain	just	the	module's
own	notice	fragment.

However	you	will	need	to	take	action	if	either	of	these	conditions	are	true:

the	module	produces	an	artifact	that	is	not	a	JAR	file	-	for	example,	the	jsgui	project	produces	a	WAR	file;
the	module	bundles	third-party	code	that	requires	a	change	to		LICENSE		and/or		NOTICE	.

In	this	case	you	will	need	to	disable	the	automatic	insertion	of		LICENSE		and		NOTICE		and	insert	your	own	versions
instead.

For	an	example	of	a	JAR	file	with	customized		LICENSE	/	NOTICE		files,	refer	to	the		usage/cli		project.	For	an	example
of	a	WAR	file	with	customized		LICENSE	/	NOTICE		files,	refer	to	the		usage/jsgui		project.

The	source	release

In	practice,	the	source	release	contains	nothing	that	isn't	in	the	individual	produced	Maven	artifacts	(the	obvious
difference	about	it	being	source	instead	of	binary	isn't	relevant).	Therefore,	the	source	release		LICENSE		and		NOTICE	
can	be	considered	to	be	the	union	of	every	Maven	artifact's		LICENSE		and		NOTICE	.	The	amalgamated	files	are	kept	in
the	root	of	the	repository.

The	binary	release

This	is	the	trickiest	one	to	get	right.	The	binary	release	includes	everything	that	is	in	the	source	and	Maven	releases,
plus	every	Java	dependency	of	the	project.	This	means	that	the	binary	release	is	pulling	in	many	additional	items,
each	of	which	have	their	own	license,	and	which	will	therefore	impact	on		LICENSE		and		NOTICE	.

Therefore	you	must	inspect	every	file	that	is	present	in	the	binary	distribution,	ascertain	its	license	status,	and	ensure
that		LICENSE		and		NOTICE		are	correct.

License	Considerations

234

http://www.apache.org/legal/resolved.html#required-third-party-notices

License	Considerations

235

General	Good	Ways	of	Working
If	working	on	something	which	could	be	contributed	to	Brooklyn,	do	it	in	a	project	under	the		sandbox		directory.
This	means	we	can	accept	pulls	more	easily	(as	sandbox	items	aren't	built	as	part	of	the	main	build)	and	speed
up	collaboration.

When	debugging	an	entity,	make	sure	the	brooklyn.SSH	logger	is	set	to	DEBUG	and	accessible.

Use	tests	heavily!	These	are	pretty	good	to	run	in	the	IDE	(once	you've	completed	IDE	setup),	and	far	quicker	to
spot	problems	than	runtime,	plus	we	get	early-warning	of	problems	introduced	in	the	future.	(In	particular,
Groovy's	laxity	with	compilation	means	it	is	easy	to	introduce	silly	errors	which	good	test	coverage	will	find	much
faster.)

If	you	hit	inexplicable	problems	at	runtime,	try	clearing	your	Maven	caches,	or	the	brooklyn-relevant	parts,	under
	~/.m2/repository	.	Also	note	your	IDE	might	be	recompiling	at	the	same	time	as	a	Maven	command-line	build,	so
consider	turning	off	auto-build.

When	a	class	or	method	becomes	deprecated,	always	include		@deprecated		in	the	Javadoc	e.g.	"	@deprecated
since	0.7.0;	instead	use	{@link	...}	"

Include	when	it	was	deprecated
Suggest	what	to	use	instead	--	e.g.	link	to	alternative	method,	and/or	code	snippet,	etc.
Consider	logging	a	warning	message	when	a	deprecated	method	or	config	option	is	used,	saying	who	is
using	it	(e.g.	useful	if	deprecated	config	keys	are	used	in	yaml)	--	if	it's	a	method	which	might	be	called	a	lot,
some	convenience	for	"warn	once	per	entity"	would	be	helpful)
See	the	Java	deprecation	documentation

Entity	Design	Tips
Look	at	related	entities	and	understand	what	they've	done,	in	particular	which	sensors	and	config	keys	can	be	re-
used.	(Many	are	inherited	from	interfaces,	where	they	are	declared	as	constants,	e.g.		Attributes		and		UsesJmx	.)

Understand	the	location	hierarchy:	software	process	entities	typically	get	an		SshMachineLocation	,	and	use	a
	*SshDriver		to	do	what	they	need.	This	will	usually	have	a		MachineProvisioningLocation		parent,	e.g.	a
	JcloudsLocation		(e.g.	AWS	eu-west-1	with	credentials)	or	possibly	a		LocalhostMachineProvisioningLocation	.
Clusters	will	take	such	a		MachineProvisioningLocation		(or	a	singleton	list);	fabircs	take	a	list	of	locations.	Some
PaaS	systems	have	their	own	location	model,	such	as		OpenShiftLocation	.

Finally,	don't	be	shy	about	talking	with	others,	that's	far	better	than	spinning	your	wheels	(or	worse,	having	a	bad
experience),	plus	it	means	we	can	hopefully	improve	things	for	other	people!

YAML	Blueprint	Debugging
Brooklyn	will	reject	any	YAML	blueprint	that	contains	syntax	errors	and	will	alert	the	user	of	such	errors.

However,	it	is	possible	to	create	a	blueprint	that	is	syntactically	legal	but	results	in	runtime	problems	for	Brooklyn
(for	example,	if	an	enricher's		enricher.producer		value	is	not	immediately	resolvable).

If	Brooklyn	appears	to	freeze	after	deploying	a	blueprint,	run	the		jstack	<brooklyn-pid>		command	to	view	the
state	of	all	running	threads.	By	examining	this	output,	it	may	become	obvious	which	thread(s)	are	causing	the
problem,	and	the	details	of	the	stack	trace	will	provide	insight	into	which	part	of	the	blueprint	is	incorrectly	written.

Miscellaneous	Tips	and	Tricks

236

https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html

Project	Maintenance
Adding	a	new	project	may	need	updates	to		/pom.xml			modules		section	and		usage/all		dependencies

Adding	a	new	example	project	may	need	updates	to		/pom.xml		and		/examples/pom.xml		(and	the	documentation
too!)

Miscellaneous	Tips	and	Tricks

237

Logging:	A	Quick	Overview
For	logging,	we	use	logback	which	implements	the	slf4j	API.	This	means	you	can	use	any	slf4j	compliant	logging
framework,	with	a	default	configuration	which	just	works	out	of	the	box	and	bindings	to	the	other	common	libraries
(java.util.logging	,		log4j	,	...)	if	you	prefer	one	of	those.

OSGi	based	Apache	Brooklyn

While	developing	it	may	be	useful	to	change	logging	level	of	some	of	the	Apache	Brooklyn	modules.	The	easiest	way
to	do	that	is	via	the	karaf	console	which	can	be	started	by		bin/client	.	(Details	regarding	using	Apache	Brooklyn
Karaf	console)	For	example	if	you	would	like	to	inspect	jclouds	API	calls,	enable	jclouds.wire	logging	just	enable	it
from	karaf	client.

log:set	DEBUG	jclouds.wire

To	check	other	log	levels.

log:list

If	for	some	reason	log	level	needs	modified	before	the	first	start	of	Karaf	then	you	can	modify	the	config	file
	etc/org.ops4j.pax.logging.cfg		before	hand.	For	more	information	check
https://ops4j1.jira.com/wiki/display/paxlogging/Configuration.

Classic	-	non-OSGI	based	Apache	Brooklyn

To	use:

Users:	If	using	a	brooklyn	binary	installation,	simply	edit	the		logback.xml		or		logback-custom.xml		supplied	in	the
archive,	sometimes	in	a		conf/		directory.

Developers:	When	setting	up	a	new	project,	if	you	want	logging	it	is	recommended	to	include	the		brooklyn-
logback-xml		project	as	an	optional	and	provided	maven	dependency,	and	then	to	put	custom	logging
configuration	in	either		logback-custom.xml		or		logback-main.xml	,	as	described	below.

Customizing	Your	Logging

The	project		brooklyn-logback-xml		supplies	a		logback.xml		configuration,	with	a	mechanism	which	allows	it	to	be
easily	customized,	consumed,	and	overridden.	You	may	wish	to	include	this	as	an	optional	dependency	so	that	it	is
not	forced	upon	downstream	projects.	This		logback.xml		file	supplied	contains	just	one	instruction,	to	include
	logback-main.xml	,	and	that	file	in	turn	includes:

	logback-custom.xml	

	brooklyn/logback-appender-file.xml	

	brooklyn/logback-appender-stdout.xml	

	brooklyn/logback-logger-excludes.xml	

	brooklyn/logback-debug.xml	

For	the	most	common	customizations,	simply	create	a		logback-custom.xml		on	your	classpath	(ensuring	it	is	loaded
before	brooklyn	classes	in	classpath	ordering	in	the	pom)	and	supply	your	customizations	there:

<included>

				<!--	filename	to	log	to	-->											

Logging

238

https://ops4j1.jira.com/wiki/display/paxlogging/Configuration

				<property	name="logging.basename"	scope="context"	value="acme-app"	/>

				<!--	additional	loggers	-->

				<logger	name="com.acme.app"	level="DEBUG"/>

</included>

For	other	configuration,	you	can	override	individual	files	listed	above.	For	example:

To	remove	debug	logging,	create	a	trivial		brooklyn/logback-debug.xml	,	containing	simply		<included/>	.
To	customise	stdout	logging,	perhaps	to	give	it	a	threshhold	WARN	instead	of	INFO,	create	a		brooklyn/logback-
appender-stdout.xml		which	defines	an	appender	STDOUT.
To	discard	all	brooklyn's	default	logging,	create	a		logback-main.xml		which	contains	your	configuration.	This
should	look	like	a	standard	logback	configuration	file,	except	it	should	be	wrapped	in		<included>		XML	tags	rather
than		<configuration>		XML	tags	(because	it	is	included	from	the		logback.xml		which	comes	with		brooklyn-
logback-xml	.)
To	redirect	all	jclouds	logging	to	a	separate	file	include		brooklyn/logback-logger-debug-jclouds.xml	.	This	redirects
all	logging	from		org.jclouds		and		jclouds		to	one	of	two	files:	anything	logged	from	Brooklyn's	persistence
thread	will	end	up	in	a		persistence.log	,	everything	else	will	end	up	in		jclouds.log	.

You	should	not	supply	your	own		logback.xml		if	you	are	using		brooklyn-logback-xml	.	If	you	do,	logback	will	detect
multiple	files	with	that	name	and	will	scream	at	you.	If	you	wish	to	supply	your	own		logback.xml	,	do	not	include
	brooklyn-logback-xml	.	(Alternatively	you	can	include	a		logback.groovy		which	causes	logback	to	ignore
	logback.xml	.)

You	can	set	a	specific	logback	config	file	to	use	with:

-Dlogback.configurationFile=/path/to/config.xml

Assemblies

When	building	an	assembly,	it	is	recommended	to	create	a		conf/logback.xml		which	simply	includes		logback-
main.xml		(which	comes	from	the	classpath).	Users	of	the	assembly	can	then	edit	the		logback.xml		file	in	the	usual
way,	or	they	can	plug	in	to	the	configuration	mechanisms	described	above,	by	creating	files	such	as		logback-
custom.xml		under		conf/	.

Including		brooklyn-logback-xml		as	an	optional	and	provided	dependency	means	everything	should	work	correctly	in
IDE's	but	it	will	not	include	the	extra		logback.xml		file	in	the	assembly.	(Alternatively	if	you	include	the		conf/		dir	in
your	IDE	build,	you	should	exclude	this	dependency.)

With	this	mechanism,	you	can	include		logback-custom.xml		and/or	other	files	underneath		src/main/resources/		of	a
project,	as	described	above	(for	instance	to	include	custom	logging	categories	and	define	the	log	file	name)	and	it
should	get	picked	up,	both	in	the	IDE	and	in	the	assembly.

Tests

Brooklyn	projects		test		scope	includes	the		brooklyn-utils-test-support		project	which	supplies	a		logback-test.xml	.
logback	uses	this	file	in	preference	to		logback.xml		when	available	(ie	when	running	tests).	However	the		logback-
test.xml		Brooklyn	uses	includes	the	same		logback-main.xml		call	path	above,	so	your	configurations	should	still	work.

The	only	differences	of	the		logback-test.xml		configuration	is	that:

Debug	logging	is	included	for	all	Brooklyn	packages
The	log	file	is	called		brooklyn-tests.log	

Caveats

Logging

239

logback	uses	SLF4J	version	1.6	which	is	not	compatible	with	1.5.x.	If	you	have	dependent	projects	using	1.5.x
(such	as	older	Grails)	things	may	break.

If	you're	not	getting	the	logging	you	expect	in	the	IDE,	make	sure		src/main/resources		is	included	in	the
classpath.	(In	eclipse,	right-click	the	project,	the	Build	Path	->	Configure,	then	make	sure	all	dirs	are	included	(All)
and	excluded	(None)	--		mvn	clean	install		should	do	this	for	you.)

You	may	find	that	your	IDE	logs	to	a	file		brooklyn-tests.log		if	it	doesn't	distinguish	between	test	build	classpaths
and	normal	classpaths.

Logging	configuration	using	file	overrides	such	as	this	is	very	sensitive	to	classpath	order.	To	get	a	separate
	brooklyn-tests.log		file	during	testing,	for	example,	the		brooklyn-test-support		project	with	scope		test		must	be
declared	as	a	dependency	before		brooklyn-logback-includes	,	due	to	the	way	both	files	declare		logback-
appender-file.xml	.

Similarly	note	that	the		logback-custom.xml		file	is	included	after	logging	categories	and	levels	are	declared,	but
before	appenders	are	declared,	so	that	logging	levels	declared	in	that	file	dominate,	and	that	properties	from	that
file	apply	to	appenders.

Finally	remember	this	is	open	to	improvement.	It's	the	best	system	we've	found	so	far	but	we	welcome	advice.	In
particular	if	it	could	be	possible	to	include	files	from	the	classpath	with	wildcards	in	alphabetical	order,	we'd	be
able	to	remove	some	of	the	quirks	listed	above	(though	at	a	cost	of	some	complexity!).

Logging

240

Usually	during	development,	you	will	be	running	Brooklyn	from	your	IDE	(see	IDE	Setup),	in	which	case	debugging	is
as	simple	as	setting	a	breakpoint.	There	may	however	be	times	when	you	need	to	debug	an	existing	remote	Brooklyn
instance	(often	referred	to	as	Resident	Brooklyn,	or	rBrooklyn)	on	another	machine,	usually	in	the	cloud.

Thankfully,	the	tools	are	available	to	do	this,	and	setting	it	up	is	quite	straightforward.	The	steps	are	as	follows:

Getting	the	right	source	code	version
Starting	Brooklyn	with	a	debug	listener
Creating	an	SSH	tunnel
Connecting	your	IDE

Getting	the	right	source	code	version
The	first	step	is	to	ensure	that	your	local	copy	of	the	source	code	is	at	the	version	used	to	build	the	remote	Brooklyn
instance.	The	git	commit	that	was	used	to	build	Brooklyn	is	available	via	the	REST	API:

http://<remote-address>:<remote-port>/v1/server/version

This	should	return	details	of	the	build	as	a	JSON	string	similar	to	the	following	(formatted	for	clarity):

{

				"version":	"0.13.0-SNAPSHOT",		{%	comment	%}BROOKLYN_VERSION{%	endcomment	%}

				"buildSha1":	"c0fdc15291702281acdebf1b11d431a6385f5224",

				"buildBranch":	"UNKNOWN"

}

The	value	that	we're	interested	in	is		buildSha1	.	This	is	the	git	commit	that	was	used	to	build	Brooklyn.	We	can	now
checkout	and	build	the	Brooklyn	code	at	this	commit	by	running	the	following	in	the	root	of	your	Brooklyn	repo:

%	git	checkout	c0fdc15291702281acdebf1b11d431a6385f5224

%	mvn	clean	install	-DskipTests

Whilst	building	the	code	isn't	strictly	necessary,	it	can	help	prevent	some	IDE	issues.

Starting	Brooklyn	with	a	debug	listener
By	default,	Brooklyn	does	not	listen	for	a	debugger	to	be	attached,	however	this	behaviour	can	be	set	by	setting
JAVA_OPTS,	which	will	require	a	restart	of	the	Brooklyn	node.	To	do	this,	SSH	to	the	remote	Brooklyn	node	and	run
the	following	in	the	root	of	the	Brooklyn	installation:

#	NOTE:	Running	this	kill	command	will	lose	existing	apps	and	machines	if	persistence	is	disabled.

%	kill	`cat	pid_java`

%	export	JAVA_OPTS="-Xms256m	-Xmx1g	-agentlib:jdwp=transport=dt_socket,address=127.0.0.1:8888,server=y,suspend=

n"

%	bin/brooklyn	launch	&

If		JAVA_OPTS		is	not	set,	Brooklyn	will	automatically	set	it	to		"-Xms256m	-Xmx1g"	,	which	is	why	we	have	prepended	the
agentlib	settings	with	these	values	here.

You	should	see	the	following	in	the	console	output:

Listening	for	transport	dt_socket	at	address:	8888

Brooklyn	Remote	Debugging

241

This	will	indicate	the	Brooklyn	is	listening	on	port	8888	for	a	debugger	to	be	attached.

Creating	an	SSH	tunnel
If	port	8888	is	accessible	on	the	remote	Brooklyn	server,	then	you	can	skip	this	step	and	simply	use	the	address	of	the
server	in	place	of	127.0.0.1	in	the	Connecting	your	IDE	section	below.	It	will	normally	be	possible	to	make	the	port
accessible	by	configuring	Security	Groups,	iptables,	endpoints	etc.,	but	for	a	quick	ad-hoc	connection	it's	usually
simpler	to	create	an	SSH	tunnel.	This	will	create	an	open	SSH	connection	that	will	redirect	traffic	from	a	port	on	a	local
interface	via	SSH	to	a	port	on	the	remote	machine.	To	create	the	tunnel,	run	the	following	on	your	local	machine:

#	replace	this	with	the	address	or	IP	of	the	remote	Brooklyn	node

REMOTE_HOST=<remote-address>

#	if	you	wish	to	use	a	different	port,	this	value	must	match	the	port	specified	in	the	JAVA_OPTS

REMOTE_PORT=8888	

#	if	you	wish	to	use	a	different	local	port,	this	value	must	match	the	port	specified	in	the	IDE	configuration

LOCAL_PORT=8888	

#	set	this	to	the	login	user	you	use	to	SSH	to	the	remote	Brooklyn	node

SSH_USER=root	

#	The	private	key	file	used	to	SSH	to	the	remote	node.	If	you	use	a	password,	see	the	alternative	command	below

PRIVATE_KEY_FILE=~/.ssh/id_rsa	

%	ssh	-YNf	-i	$PRIVATE_KEY_FILE	-l	$SSH_USER	-L	$LOCAL_PORT:127.0.0.1:$REMOTE_PORT	$REMOTE_HOST

If	you	use	a	password	to	SSH	to	the	remote	Brooklyn	node,	simply	remove	the		-i	$PRIVATE_KEY_FILE		section	like	so:

ssh	-YNf	-l	$SSH_USER	-L	$LOCAL_PORT:127.0.0.1:$REMOTE_PORT	$REMOTE_HOST

If	you	are	using	a	password	to	connect,	you	will	be	prompted	to	enter	your	password	to	connect	to	the	remote	node
upon	running	the	SSH	command.

The	SSH	tunnel	should	now	be	redirecting	traffic	from	port	8888	on	the	local	127.0.0.1	network	interface	via	the	SSH
tunnel	to	port	8888	on	the	remote	127.0.0.1	interface.	It	should	now	be	possible	to	connect	the	debugger	and	start
debugging.

Connecting	your	IDE
Setting	up	your	IDE	will	differ	depending	upon	which	IDE	you	are	using.	Instructions	are	given	here	for	Eclipse	and
IntelliJ,	and	have	been	tested	with	Eclipse	Luna	and	IntelliJ	Ultimate	14.

Eclipse	Setup

To	debug	using	Eclipse,	first	open	the	Brooklyn	project	in	Eclipse	(see	IDE	Setup).

Now	create	a	debug	configuration	by	clicking		Run		|		Debug	Configurations...	.	You	will	then	be	presented	with	the
Debug	Configuration	dialog.

Select		Remote	Java	Application		from	the	list	and	click	the	'New'	button	to	create	a	new	configuration.	Set	the	name	to
something	suitable	such	as	'Remote	debug	on	8888'.	The	Project	can	be	set	to	any	of	the	Brooklyn	projects,	the
Connection	Type	should	be	set	to	'Standard	(Socket	Attach)'.	The	Host	should	be	set	to	either	localhost	or	127.0.0.1
and	the	Port	should	be	set	to	8888.	Click	'Debug'	to	start	debugging.

IntelliJ	Setup

To	debug	using	IntelliJ,	first	open	the	Brooklyn	project	in	IntelliJ	(see	IDE	Setup).

Brooklyn	Remote	Debugging

242

Now	create	a	debug	configuration	by	clicking		Run		|		Edit	Configurations	.	You	will	then	be	presented	with	the
Run/Debug	Configurations	dialog.

Click	on	the		+		button	and	select	'Remote'	to	create	a	new	remote	configuration.	Set	the	name	to	something	suitable
such	as	'Remote	debug	on	8888'.	The	first	three	sections	simply	give	the	command	line	arguments	for	starting	the
java	process	using	different	versions	of	java,	however	we	have	already	done	this	in	Starting	Brooklyn	with	a	debug
listener.	The	Transport	option	should	be	set	to	'Socket',	the	Debugger	Mode	should	be	set	to	'Attach',	the	Host	should
be	set	to	localhost	or	127.0.0.1	(or	the	address	of	the	remote	machine	if	you	are	not	using	an	SSH	tunnel),	and	the
Port	should	be	set	to	8888.	The	'Search	sources'	section	should	be	set	to		<whole	project>	.	Click	OK	to	save	the
configuration,	then	select	the	configuration	from	the	configurations	drop-down	and	click	the	debug	button	to	start
debugging.

Testing

The	easiest	way	to	test	that	remote	debugging	has	been	setup	correctly	is	to	set	a	breakpoint	and	see	if	it	is	hit.	An
easy	place	to	start	is	to	create	a	breakpoint	in	the		ServerResource.java		class,	in	the		getStatus()		method.

Brooklyn	Remote	Debugging

243

	Introduction
	Running Apache Brooklyn
	Deploying Blueprints
	Monitoring and Managing Applications
	Policies
	Concepts

	Downloads
	Entities
	Application, Parent and Membership
	Configuration, Sensors and Effectors
	Lifecycle and ManagementContext
	Dependent Configuration
	Location
	Policies
	Execution
	Stop/start/restart behaviour

	Writing Blueprints
	Creating YAML Blueprint
	Entity Configuration
	Setting Locations
	Configuring VMs
	Multiple Services and Dependency Injection
	Custom Entities
	Catalog
	Clusters, Specs, and Composition
	Enrichers
	Policies
	Effectors
	Clusters and Policies
	Java Entities
	Creating from a Maven Archetype
	Defining and Deploying
	Handling Bundle Dependencies
	Topology, Dependencies, and Management Policies
	Common Classes and Entities
	Feeds
	Writing an Entity
	Custom Entity Development
	Service State
	Entitlements

	Windows Blueprints
	Testing YAML Blueprints
	Ansible in YAML Blueprints
	Chef in YAML Blueprints
	Salt in YAML Blueprints
	YAML Blueprint Advanced Example
	Blueprinting Tips

	Deploying Blueprint
	Production Installation
	Starting, Stopping and Monitoring
	Server CLI Reference
	Client CLI Reference
	Launching
	Deploying Blueprints
	Monitoring and Managing Applications
	Using Policies

	REST API
	Brooklyn Configuration and Options
	Persistence
	High Availability
	Configuring HA - an example

	Logging
	Externalized Configuration
	Requirements
	Upgrade
	Security Guidelines
	Troubleshooting

	Other 0.12.0 Resources
	Maven Build
	IDE Setup
	Code Structure
	Tests
	License Considerations
	Miscellaneous Tips and Tricks
	Logging
	Brooklyn Remote Debugging

